INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Mechanical computer aided engineering of surface unit supports: An analytical design and structural analyses of a new electric range surface unit support comparing its strength to an existing design, applying solid and finite element modeling and analyses, verified by simple static loading experiments

Kern, Jeffrey Alan, M.S.
University of Louisville, 1991

MECHANICAL COMPUIER AIDED ENGINEERDNG OF SURFACE UNIT SUPPORIS
An analytical design and structural analyses of a new electric range surface unit support comparing its strength to an existing design, applying solid and finite element modeling and analyses, verified by simple static loading experiments.

By
Jeffrey A. Kern
B.S.M.E., Purdue University, 1985

A Thesis
Sulmitted to the Faculty of the Graduate School of the University of Louisville in Partial Fulfillment of the Requirements for the iegree of

Master of Science

Department of Mechanical Engineering University of Louisville Louisville, Kentucky

MECHANICAL COMPUTER AIDED ENGINEERING OF SURFACE UNIT SUPPORTS
 An analytical design and structural analyses of a new electric range surface unit support comparing its strength to an existing design, applying solid and finite element modeling and analyses, verified by simple static loading experiments.
 By
 Jeffrey A. Kern
 B.S.M.E., Purche University, 1985

A Thesis Approved on
$\frac{1 \text { oven bey } 15,1991}{\text { (DATE) }}$
by the following Reading committee:

ABSIRACT

This thesis determines analytically the degree to which an electric range surface unit's structural integrity would change if its delta shaped support was replaced with a Y shaped design. It develops a new Y shaped support to fit the unit's sheathed heater, and to rest in the same trim ring as the delta support, minimizing the material required. The new support and the delta design were modeled and analyzed using finite element analyses (FEA). The analyses coupare the support's responses to static loads. The static loads applied represent a load test which has historically been used to compare relative strength of surface unit supports.

This thesis could have been completed using traditional design engineering and laboratory evaluation methods (i.e., designing parts, building samples, and running the load test). It was performed as an analytic study to show that design engineering productivity can be increased through the use of "Mechanical Computer Aided Engineering" (MCAE). The results of the analyses were in good agreement with the results of the physical load test that was modeled.

ACANOWLEDGEMENIS

The author gratefully acknowledges the assistance of Dr. J. P. Wong for is assistance and guidance in the coupletion of this thesis.

The author also wishes to thank Dr Wong and Dr. M. L. Day for his assistance in teaching the author the basics of finite element analysis, and for Dr. Day's assistance in working out the problems encounter in the completion of the analyses performed.

The author wishes to express his thanks to GE Appliances for the use of their equipment, software, and computers, especially for those that were loaned to the author for an extended period of time for use in his home. If it weren't for this, the author might never have had the ability to complete this work. In addition to this the author wishes to thank his managers at GE for their patience in waiting for the completion of this project.

The author is indebted to his wife, and daughters, for without there help and patient understanding of the countless hours spent away from them, this work would not have been possible.

table of Contenis

Page
ABSIRACT iii
ACNOWL PDGYENIS iv
LIST OF TABLES vil
LIST OF IIIUSIRATIONS vili
CHAPIER I - INIRODUCTITON 1
CHAPIER II - I-DEAS 10
CHAPIER III - WORKING GBCMEIRY 12
CHAPIER IV - OBJECI PROFITES. 20
CHAPIER V - SOLID MODEL CREATICN 26
CHAPTER VI - ASSEMBLY MCDELING. 35
CHAPTER VII - SOLTD MODEL DISPLAY. 41
CHAPIER VIII - 2D CAD DRANINGS. 44
CHAPITR IX - PRODUCIION (CALMA) DRAWINGS. 50
CHAPIER X - I-DEAS FEA PREPROCESSSING 55
CHAPIER XI - ANSYS FEA PREPROCESSING. 79
CHAPIER XII - POSIPPOCESSING OF THE FEA RESULAS. 81
CHAPIER XIII - FEA MIESH SIZE OPIDMIZAITON 84
CHAPTER XIV - PHYSICAL MODEL VERIFICATICN. 89
CHAPIER XV - FEA ANALYSIS OF PLATE IOADING. 97
CHAPIER XVI - SUNARI AND CONCLUSIONS. 115
(Contirued)

TABLE OF CONIPNIS

Page
APPENDIX I - I-DEAS QUICK REFERENCES. 117
APPENDIX II - ANSYS CUICK REFERENCES 118
APPENDIX III - UNIVERSAL FILES. 120
APPENDIX IV - ANSYS INIERACIIVE COYPAND FILE 123
APPENDIX V - ANSYS BATCH COMMAND FILE 127
APPENDIX VI - PLATE IOAD SIRESS RESUITS. 134
APPENDIX VII - GENERAL AOCESS TO AND USE OF I-DEAS. 136
APPENDIX VIII - I-DEAS SOLTD MODEL CREATION OPERATIONS 151
APPENDIX IX - I-DEAS ASSEMBLY MODETTNG OPERATIONS. 185
APPENDIX X - I-DEAS DISPLAY OPIIONS OPERAIIONS 200
APPENDIX XI - CAD DRAFTING OPERATIONS. 219
APPENDIX XII - I-DEAS FREPROCESSING OPERATIONS. 244
APPENDIX XIII - ANSYS FREPROCESSING OPERAIIONS 258
APPENDIX XIV - POST PROCESSING OPERAIICNS 291
BIBLIOGRAPHY 312
VITAE 313

LIST OF TABLES

Page
TABLE 1. - SYSTEM ASSEMBLY HIERARCHY FCR THE OLD SURFACE UNIT ASM 36
TABLE 2. - SYSIEM ASSEMBLY HIERARCHY FOR THE NEN SURFACE UNIT ASM 37
table 3. - FEA MESH SIZE TRIAL RESUITS 86
TABLE 4. - VERIFICATICN LOAD TEST RESUINS 95
table 5. - Funcitan key viening oamands 144
TABLE 6. - I-DEAS' VIEN COMANDS 147
TABLE 7. - ANSYS FILBS 266
TABLE 8. - I-DEAS DATA LOADER PROCESSING OPIIONS 303

LIST OF IIUSIRATICNS

Page
FIGURE 1. - OLD "DETHA" SUPPORT DESTGN. 3
FIGURE 2. - NEW MY" SUPPORT DESIGN. 4
FIGURE 3. - CENTER LINE OF THE SURFACE UNIT'S HEAITNG COIL. 14
FIGURE 4. - OLD COIL SUPPORT LAYOUT 15
FIGURE 5. - NEN COIL SUPPORT LAYOUT 16
FIGURE 6. - NEW SUPPORT'S HORKINC, SET 18
FIGURE 7. - AITACHMENT TINES WCRKING_SET. 19
FIGURE 8. - FIRST SAMPIE 2D PROFILE 24
FIGRE 9. - SECCND SAMPLE 2D PROFILE. 25
FIGURE 10. - OLD SUPPCRR'S PART 1 SOLID. 28
FIGURE 11. - OLD SUPPORT'S PART 2 SOLID. 29
FIGURE 12. - OLD SUPPORT'S PART 3 SOLID. 30
FIGURE 13. - OLD SUPPORT ASSEMBLY'S SOLID 31
FIGURE 14. - NEN SUPPORT'S FRONT PART SOLID. 32
FIGURE 15. - NEW SUPPORT'S REAR PART SOLTD 33
FIGURE 16. - NEN SUPPORT ASSEMBLY'S SOLID. 34
FIGURE 17. - SYSTEY ASSEMBLY OF THE OLD SURFACE UNIT ASSPMBLY 38
FIGURE 18. - SYSTEM ASSEMBLY OF THE NEN SURFACE UNIT ASSEMBLY. 39
FIGURE 19. - EXPIODED VIEN OF THE NEN SURFACE UNIT ASSEMBLY. 40
FIGURE 20. - DISPIAY OPIIONS: LINE, HIDDEN, BOUNDARY \& SHADED 42
FIGURE 21. - SHADED TMPGES WITH TRANSLUCENCY 43
FIGURE 22. - I-DEAS DRAFITNG SKEICH OF THE NEN SUPPORT ASSEMBLY. 46
FIGURE 23. - I-DEAS DRAFTING SKEICH OF THE SUPPORT'S FRONT PIECE 47
FIGURE 24. - I-DEAS DRAFITNG SKEICH OF THE SUPPORT'S REAR PIECE. 48

ITST OF IITUSIRATIONS
 (continued)

Page
FIGURE 25. - I-DEAS DRAFTING SKEICH OF THE SUPPORT'S CENIER TRIMS. 49
FIGURE 26. - CAIMA DRANING OF THE NDN SUPPORI ASSEMBLY 51
FIG81E 27. - CAIMA DRANDNG OF THE SUPPORT'S FRONT PIECE. 52
FIGURE 28. - CAIMA DRAFING OF THE SUPPORT'S REAR PIECE 53
FIGURE 29. - CALMA DRAWING OF THE SUPPORT'S CENIER TRINS 54
FIGURE 30. - INTITAL OLD SUPPORT'S FEA WORKING SEI 61
FIGURE 31. - INITIAL NEN SUPPORT'S FEA WORKING SEI 62
FIGURE 32. - TEMPORARY OLD SUPPORT'S FEA WORKING SET 64
FIGURE 33. - TENPORARY NEN SUPPORT'S FEA MORKING SEY 65
FIGURE 34. - TWYPCRARY OLD SUPPORT'S FEA MESH AREAS. 69
FIGURE 35. - TEMPORARY NEN SUPPORT'S FEA MESH AREAS. 70
FIGURE 36. - OLD SUPPORT'S WEIDED NODES. 72
FIGURE 37. - NEN SUPPORT'S WELDED NODES 73
FIGURE 38. - OLD SUPPORT'S FEA MODEL RESIRATNED. 75
FIGURE 39. - NEN SUPPORT'S FEA MODEL RESIRATNDD. 76
FIGURE 40. - NEN SUPPORT WIHH CENIRAL FIFTEEN POUND SIATIC LOAD. 85
FIGURE 41. - OLD SUPPORT WIHH CENHRAL FIFTEEN POUND SIAITC LOAD. 88
FIGURE 42. - OLD SUPPORT'S VERIFICATION TEST SEIUP 90
FI90RE 43. - NEN SUPPORT'S VERIFICATION TEST SEIUP 91
FIGURE 44. - BOITIE AND WIRES USED TO LOAD THE SUPFORIS OF TESIS 93
FIGURE 45. - OLD SUPPORT AND LOAD PLATE ONNDCTED WITH GAP EMEMENTS. 100
FIGURE 46. - NEN SUPPORT AND LOAD PLATE CONNECIED WITH GAP ELEMENIS. 101

LIST OF IULUSIRATIONS
 (continued)

Page
FIGURE 47. - OLD SUPFORT'S IOAD PLANE WIHH PRESSURE APPLIED. 105
FIGURE 48. - NEN SUPPORT'S LOAD PLATE WITH PRESSURE APPLTED. 106
FIGURE 49. - OLD SUPPORT'S DISPLACMMENS UNDER 25 LBS PLATE LOAD 110
FIGURE 50. - NEN SUPPORT'S DISPLACPNENIS UNDER 25 LBS PLATE IOAD 111
FIGURE 51. - OID SUPPORT'S VCN MISES SIPRES CONIOURS 113
FIGURE 52. - NDN SUPPORT'S VON MISES SIRESS CONIOURS 114
FIGURE 53. - EXAMPLE OF A SOLTD CREAIED BY EXITRUSICN 155
FIGURE 54. - EXAYPLE OF A SOLID CREATID BY REVOLIIION. 157
FIGURE 55. - HEATING UNIT'S SOLID MODEL (REVOLUITONS) 159
FIGURE 56. - FILTEIED OUTSIDE DDGE EXAMPLE 162
FIGURE 57. - FIITEIED DNSIDE EDGE EXAMPLE. 163
FIGURE 58. - FILLEIED CORNER EXAMPLE 165
FIGURE 59. - I-DEAS V ROMNDING EXAMPLE 166
FIGURE 60. - KARP COMNAND EXPERIMENT 183
FIGURE 61. - I-DEAS DRAFIING DISPLAY 221

CHAPTER I
INIPODUCIION

THESIS
GE Appliances (GEA) uses relatively expensive "delta" shaped supports for the calrod ${ }^{R} 2$ surface units ("burners") they produce for cooking on the electric ranges they manufacture. Their competitors use simple "Y" shaped surports for their surface units, which use less material (fairly expensive stainless steel) and fewer pieces to construct. This puts GEA at a cost disadvantage. But, in order to maintain high quality standards, GEA has set strength requirements for their surface units which has caused them to retain the more expensive support designs.

This thesis develops and analyzes a simple "Y" shaped supporit for one of GEA's Calrod ${ }^{R}$ Surface Units. This design is to replace the "delta" shaped support that GEA currently uses, without any modification of the heating element. The new design is to perform acceptably from a structural standpoint, and to require less material than the current design. Thus, the intent of the new support design is material cost productivity, provided the pay back period on the tooling and inplementation costs are acceptable.
2. Calrod is a registered trademark of the General Electric Campany.

Figure 1. shows the carrent "delta" suppart design, which will be referred to as the "old" support design. Figure 2. shows the "Y" suppont design, which will be referred to as the "new" support design.

The complete surface unit assembly has several structural requirements. But, since only the support is being changed, its response to static loading is all that was analyzed. The units must pass a test under a twenty-five pound (25 lbs) static losd. This test is conducted with weighted concave and convex pots full of boiling water, to simulate a "life time" of use by an avid "home canner". These pots create thermal variations in the unit's heater coil and can cause distortion of the coil. But, since the positions of the "tines" used to crimp the supports to the coils were not changed, this effect was not analyzed. The material used for the supports is a stainless steel alloy. Its properties do not vary significantly within the range of operating temperatures, and the supports' temperatures are reasonably uniform during this test. Therefore, no thermal expansion or thermal loading was modeled. The FEA performed was a static loading with a uniform flat plate load of 25 lbs coupled to the sugpocts with "gap" elements. Both the new and old support designs were modeled for comparison of the resulting stresses. Several versions of the basic models were created with varicus mesh sizes and simply loaded to determine an optimum mesh size for the final analyses.

SDRC I-DEAS 4.1: Object Madeling database: heu surface unit support design - jeffrey a. kerm UIEU : SUPT IS0

Ob ject: 6-0LD SUPPORT DESIG

```
14-DEC-90 21:46:43
orsplay : No Stored opilim
8in: 2-8IHCH
```


FIGURE 1. - OLD "DELTA" SUPPORT DESIGN

SDRC I-DEAS 4.1: Object Modeling oatabase: MEU subface unit support desigh - jeffrey a. kerm UIEU Task: SUPJECT

Tosk: OBJECT
Objask: 27 -NEU SUPPORT DESIGM

21-MAR-91 13:58:09

Display : No stored option Bin: 2-8inch

FIGURE 2. - NEW "Y" SUPPORT DESIGN

SOFTHARE

Three of the MCAE software packages available to GE Appliance (GEA) employees in Louisville, KY, are: SLRC ${ }^{\text {IM } 3}$ IDEAS ${ }^{\text {TM }} 4$ MCAE system (solid modeling and engineering analyses); ANSYS ${ }^{\text {R }} 5$ finite element analysis (FEA) programs; and CAIMA DDM ${ }^{\text {TM }} 6$ Camputer Aided Design (CAD). They were used for the design of the new surface unit support, and analysis of the relative strength of the two supports.

If a design project is limited to one or two of the major design functions of: physical layout; product illustration; CAD drawing creation; FFA analyses; namerical control (NC) tool path creation; or mold filling analyses, it may be most ecanomical to utilize specific software directly. But, in cases (such as this one) were several of these functions are required, the creation of a common data base which can be used in each of these areas can save time, and prevent errors caused by the creations of duplicate geametric models.

SLRC's I-DEAS software is a "complete" Mechanical Computer-Aided Engineering (MCAE) system. It consists of a set of integrated "families" of programs which access one data base that the user creates interactively through use of graphics computer terminals. The I-DFAS system uses Solids Modeling to create "solids" with the dimensional, material, and physical properties of the objects being modeled, which
3. SURC is a service trademark of Structural Dynmics Research Corp.
4. I-DEAS is a trademark of Structural Dynamics Pesearch Coxp.
5. ANSYS is a registered trademark of Swanson Analysis, Inc.
6. CALMA DCM is a trademark of Calma Company, a wholly owned subsidiary of the General Electric Company.
are for use with the Engineering Analyses available within I-DEAS, or in external software packages, such as ANSYS. Thus, I-DEAS software was used extensively for this thesis.

Because of its capabilities for solving complex (e.g., nonlinear) problems, ANSYS finite element analysis programs have been used for the majority of the FEA work done by GEA. Because of the capabilities ANSYS offers beyond that of I-DEAS Engineering Analysis Family (e.g., its greater number of element types and non-linear capabilities) I-DEAS is most often used as a prepprocessor of the FEA data to prepare models for transfer to ANSYS, and for post processing of the results fram ANSYS solution runs. These methods were used for this thesis.

The CAD package available in I-DEAS, DRAFITNG, utilizes the three dimensional (3D) geametry from the I-DEAS solid models for the creation of two dimensional (2D) CAD drawings. Thus, if the creation of CAD drawings is the only engineering function to be performed for a particular project, a full 3D CAD package may be more appopriate. This, coupled with GEA's CAD Department's use of Calma software, required Calma DCM CAD software to be the final CAD package used to create the production drawings for the new surface unit support. But, it is possible to transfer the 3D data from I-DEAS to Calma for the creation of DOM 3D CAD drawings; and this capability was used.

In cases where a project has a tight schechule, or where an external supplier will be devaloping the product and production drawings, or where 2D engineering "sketches" are all that is needed (e.g., for use by makers), DRAFITNG is an excellent tool for the job. Also, DRAFITNG can be used without an expensive CAD workstation. It can be accessed via terminals and PCs which have graphics capabilities, and a mouse or
tablet type inqut devices. There are limitations on some of the fancier I-DEAS features that can be used, but almost any PC with a graphics display and a mouse can access GEA's installations of I-DEAS DRAFTMG using Tektronix ${ }^{7}$ emulation software. In fact, with the Personal Computer Systems Architecture (PCSA) network of DEC ${ }^{8}$ software modules that GEA has installed, anyone on that system should be able to access I-DEAS and ANSYS using the EMU-TEXK ${ }^{9}$ Tektronix emulator resident on the network. Thus, DRAFITNG was used for this thesis.

The I-DEAS system is available for both "mainframe" computer systens, and for personal computers (PCs) and self-contained workstations. At GFA, I-DEAS is available on select processors on the "AP35" and "AP1" VAX ${ }^{10}$ nodes and workstations. Some installations do not include all of the I-DEAS program families, and thus guidance from GEA's computer systems persomel may be required to locate specific functions.

The I-DEAS system is merau driven. The version (Rev. 4.1) that was used has a scrolling menu system. Some I-DEAS packages are available for PCs and workstations which overlay the menus in display windows. In either case, these merus do not impeded the speed at which the experienced user can process information. Because, as well as picking the desired function from the merus, extensive strings of memonic acronyms
7. Tektronix is a registered tradenark of Tektronix, Inc.
8. DEC is a trademark of Digital Equipment Comp.
9. EMI-TEX is a trademark of FIG Data Systens.
10. VAX is a trademark of Digital Equipment Corp.
can be input in single keyboard entries. This bypasses all intermediate menus, and thus function like a cammand, rather than a meru, ariven system.

The ANSYS finite element software is a command line driven system. ANSYS model data bases can be created interactively during an ANSYS preprocessing session, or through the use of file editocs to create ingut files. ANSYS data is stored in multiple files, some are in binary coced which can not be read or edited, and some are in ASCII format which can be read and edited. I-DEAS was used as the primary FEA preprocessor. The ANSYS input files (ASCII) were written out fram I-DEAS, edited, and then transferred into ANSYS. Once the gecmetry and analysis data was in ANSYS, ANSYS's prepprocessing was used to verify that the models were constructed as desired. ANSYS was used interactively to write out ingut files for the ANSYS solutions program. The ANSYS solution program was run in batch mode. Same post processing was be done in ANSYS, and then data was transfer back to I-DEAS for final display of the results.

I-DEAS is capable performing Computer-Aided Manufacturing (CAM) functions. It can be used to generated NUMERTCAL CONIROL (NC) tool paths for use in programing manufacturing machines, and to produce prototypes with laser and stereolythography equipment. But, for this thesis, a supplier's laser equipment was used to produce prototype parts. Also, GEA's Model Shop generates its NC tool paths with the Calma software. So, these functions were not used, and will not be discussed. Likewise, some of I-DEAS other software Families containing plastics molding, mold flow and cooling analyses, and TEST DATA ANALYSIS functions were not used in this thesis, and will not be discussed.

Both I-DEAS and ANSYS provide excellent color graphics, aiding the construction of models, and performance of analyses. Full advantage was taken of these capabilities for this thesis. It allowed various colors to be used to distinguish the different parts, materials, nodes, elements, and loads, etc. But, because of the difficulties presented in duplicating color illustrations, all figures that appear in this thesis are presented in black and white. They have been annotated to corvery the information that is provided by these programs' color graphics.

To assist GEA's engineers, and hopefully others, in the application of these MCAE tools for future projects, appendices were written describing the I-DEAS and ANSYS commands used for this thesis. But, software (I-DEAS and ANSYS in particular) is in a state of constant evolution, and thus epecific commands and features will vary from one version and installation to another. I-DEAS VERSICN 4.1 and ANSYS version 4.3 were available to the author at the start of this thesis, and were used. But, higher revisions had become available by the time this thesis was finished, and other will become available in the future. The author recoumends users take advantages of their advancements. Therefore, the author has attempted to limit this work's appendices to the discussion of basic ccamands that, in general, are expected to appear in all revisions of this software, due to their use in the basic methodology followed in the application of these tools. Thas, although specific commands will change, these appendices should help others know what basic functions are available and what they are capable, which will help them search within higher revisions of I-DEAS and ANSYS to locate and use improved versions of these ccmmands. The epecifics of these coumands can easily be explored when using I-DEAS and ANSYS.

CHAPIER II
I-DEAS

INPRODUCITON

The I-DEAS system is based on constructing solid models of the physical parts that are being designed and analyzed. Solids are couplete 3D representations of those parts. The models will generally be viewed or represented on the graphics display screen in wire frame form. They can also be displayed as shaded images or as wire frames with the rear portions hidden fram view. These display options allow the solids to be seen as if they ware physical parts. Both of these display options will be discussed later in this test. But, no matter how the solids are displayed, the models will contain complete part information. They not only contain geometric dimensions, like any wire frame 3D CAD model, they also contain all of the material properties of a true physical part. Although the material properties, such as density, are not always input in the early modeling phases, they do exist, even if they are left as the systems' dafault values. The solids' weights and centers of gravity etc. can be calculated by I-DEAS if desired. Also, once multiple parts are defined, systems of parts can be assembled, and their interactions and interferences can be analyzed.

I-DEAS provides several methods for creating solids. They can be constructed with basic solids, referred to as "primitives", which include cylinders, cones, and spheres. The user can also create unique solids, and solid "tools" by extruding or revolving profiles of the desired parts in space. Both primitives and user created solids can be joined with and cut from one another to construct more complex solids.

I-DFAS ENTHTY CREATICN

To create the solid models required for this thesis, I-DEAS was used on GE Appliance's couputer system, and a data base, or set of "model files" was created. The methods used, and descriptions of the I-DEAS commands applied are presented in Appendix VII. Once these steps were taken, gecmetric entities and the solid models were created. The follow four chapters are devoted to the entities that were created for this thesis in the design of the new surface unit support, and for the analysis of old and new support designs.

INTRPDUCITON

The construction of user created solids can be done by extruding or revolving profiles of the desired part in space. These profiles are 2D outlines of the cross section of the solid being constructed, which can include holes. These Profiles can be constructed directly through the creation of Profile Points, and connecting them with Profile Curves. But, most often it is necessary to create a layout of the parts being designed, or to rough out the design in 2D, in order to be able to create these profiles. In I-DEAS this is done through the creation of "working sets" or "wire frames".

GPCYITHPY CREATION

I-DEAS provides commands for the creation of: POINIS, IINES, CIRCLES, ARCS, FILIEIS, SPLTNES, entities FROM OBJECTs; and for the specification of defaults for these entities. Fach comand contains multiple cptions for use in construction of these entities.

The menus provided for setting defaults allows the user to specify the way new entities will be labeled, their colcr, the line style used, and the symbol used to display points. These options are particularly useful in differentiating between entities. For example, the use of color to differentiate between various points and carves within a working set can be very helpful. Often it is desirable to create the geometry for several Profiles of separate parts in a single Working Set. Applying a different color to each part or profile's geometry can make cursor picking of their curves easier in the next operation, which is the creation of 2 D Profiles. Once entities are created their attributes can be changed, without the need for recreating them, by using MODIFY commands.

The working geometry entity creation commands provide features found in many CAD packages. But, unlike a CAD packages (e.g., I-DEAS DRAFIING Family), only geanetry is represented solid modeling, and dimensions can not be displayed. But, entities and dimensions can be verified through the use of commands presented in the LIST merus.

HORKTMG_SEIS

Several WORKING SEI's were created for this thesis. FIGURES 3. through 7. show some of these sets. FIGURE 3. shows the layout of the center line of the surface unit's heating coil. FIGURES 4. and 5. show the old and new coil support layouts created over the heating coil layout.

SDRC I-DEAS 4.1: Object Modeling
10-DEC-90 22:36:46 DATABASE: NEL SURFACE UNIT SUPPORT DESIGN - JEFFREY A. KERM UNITS : IN UIEW : TOP

DISPLAY : No stored OPTION
Task: WORK ING SET Workset: 51-COIL LAYOUT
Profile: No current PRDFILE exists
SKin: No current SKIN GROUP exist

FIGURE 3. - CENTER LINE OF THE SURFACE UNIT'S HEATING COIL

UIEW : TOP
Task: WORKING SET
Profile: No current PROFILE exists

Workset: 1-OLD SUPPORT LAYDUT
Skin: No current SKIN GROUP exist

FIGURE 4. - OLD COIL SUPPORT LAYOUT

FIGURE 5. - NEW COIL SUPPORT LAYOUT

These working_sets were created without the need to recreate the heating coil for each of the other layouts. The "OOIL IAYOUI" WORKING_SEIT was stored. Then, it was copied into "NEN SUPPORT LAYOUT" and "OID SUPPORT LAYOUM" WORKING SEIs. Once this was done, and the new sets were individually made active, and then the CREATE commands were used to create the gecmetry for the supports. This could have been done by creating each of the support layouts without the coil's geometry, and then it could have been added to them with an APPEND command.

Several other WORKING_SEIs were created. Camplete top views of the supports were created. This allowed profiles to be created for each of the individual pieces of the supports, which were used to extrude their basic shapes. The complete process is explained in the following chapters. FIGURE 6. shows WORKHG_SEF which was created for the new support design.

Figure 7. shows the layout of a pair of tines used to attach the suyports to the heating coil. They were added into the top edge of the supports by creating profiles of these tines, extruding them into solids, positioning then on the basic supports, and then using a BOOLEAN JOIN operation.

SDRC I-DEAS 4.1: Object Modeling DATABASE: NEW SURFACE UNIT SUPPORT DESIGN - JEFFREY UIEW : TOP Task: WORKING SET Profile: No current PROFILE exists

10-DEC-98 23:24:15
UNITS : IN DISPLAY : No stored OPTION Workset: 26-NEL COIL/SUPPORT

FIGURE 6. - NEW SUPPORT'S WORKING_SET

UIEL : SIDE
Task: WORKING SET
Profile: No current PROFILE exists

Workset: 16-TINES
Skin: No current SKIN GROUP exist

CHAPIER IV
OBJECT PROFITES

INIPODUCTYON

I-DEAS Solid Modeling was used to construct 2D cross sectional outlines of the solids, called "profiles". Profiles can be used in the creation of solid models along with EXSHEUDE, REVOLVE, or SKIN commands in object modeling. These profiles can include holes for the creation of hollow solids, or solids that represent sheet metal parts, etc. The use of profiles in the creation of the solids is explained in Chapter v.

PROFTIE CREFMICN

A profile can contain up to 100 connected curves that lie in one 2D plane. Each curve will be given a different label which can be displayed and listed. These labels will be different than the labels of any corresponding working eet curve, and are independent of the carve type. The CREATE PROFILS command is used to create "porofile points" through which the I-DEAS program then fits curves to create a profile. The profile points can be created by selecting working set points or by direct creation with options presented within the create command.

The profile points (like the profile curves) will each be given unique labels which are independent of the working set's points. Profile points can be modified and deleted without effecting any working set points used to create them. The AUMO_CHAINING command is used to create a profile through the selection of working set carves that are connected end-to-end in a closed loop.

CRPATE_PROFTIE COYVAND

If the CRFALE PROFIIE command is used to construct a profile, the screen aursor is used to pick working geonetry points. The carsor will remain active until the user types a "C" (CIOSE), "D" (DONE), or "\$" (ABORT). The user finst picks a point at the end of the initial arve. Then enough additional points are selected to define the curve. one additional point is required to define a line; two additional points define an arc; and three to twenty-four additional points define a spline. Once the curve is sufficiently defined, the " Fw key is depressed or the meru is used to select FIT, and I-DEAS then fits a profile curve to the newly created profile points. This is repeated for each of the carves needed to create a closed profile. The last point in each curve automatically becomes the first point for the next. The profile can be closed either by picking the first profile point created as the last point in the final curve, or by pressing "C" or selecting CLOSE to complete the final curve.

Closed profiles are required for use in creating solids. But, the CREATE PROFITE Can be stopped with the retum key or the DONE command, leaving the profile open. An cpen profile can be added to with the CREAIE FROFIIE command, connecting new curves to the last curve created.

AUTO CHATNDMG COYYAND

The AUIO_CHATNING command takes advantage of the curves that were created in the WORKMG_SEI task. It will autcmatically create as may profiles (up to a maximm of ten) in a given plane that will form closed loops of user selected curves.

After AUNO_CANNING is initiated, this command will prampt the user to select the arves from which the search for locps should be limited. The screen cursor can be used to select only those curve that are desired (in any order). Or, SCRFPN_AREAs can be used to select groups of curves.

If the later option is used, several closed profiles may result. This is not a problem. It will just require that they all be stored. Then the user will need to determine which are to be used, and the others can be deleted with the MANAGE menn's DEXEHE commands. If the rumber of lines and carves in the desired profile(s) are known, this can be simplified by using the LIST BOUNDARY ALL command to review all the profiles that were created.

Once all of the curves that are to be considered in the creation of the profile(s) have be selected, a <REIUPN> or DONE (D) is inqut. Then I-DEAS will ask for the selection of a curve to start the profile(s). If a line is selected, I-DFAS will ask for another curve which comects to the last curve, so that it can determine the plane in which the profile(s) lie. When this is campleted, I-DEAS will autamatically create all profiles that can be constructed with the selected curves that lie in this plane. The total number of profiles will be displayed, and the user will be proupted to name each profile created and stored.

HORK PD ANE CRTEYTAMTCN

In I-DEAS Rev. 4.1, if profile(s) do not lie on the active "WORK PLANE", I-DEAS will automatically position the profile(s) on the WORK_PLANE. Also, if the user creates a custom WORK_PLANE, which is in the same plane as the desired profile(s)', but that is not an the one of the global XY, XZ, or YZ planes, the resulting profile(s) may not be oriented on top of the working set's arves. In either case, the resulting profile(s) may need to be oriented on the WCRK_PLANE before they are use to create solids in the OBJECT_3D task; or they may be used as is, and the solids created may need to be oriented before they are used in construction of a larger object. This is especially true about profiles used to create solids with the REVOLVE command.

EXAMPTE PROFTTES

The first example of one of the profiles created for this thesis is shown in FIGURE 8. This profile was created with a WOPR PLANE which lies on the global XZ plane. The global system's axes triad is displayed in the lower right corner of the view port. The HORK PLANE's triad is displayed in the lower right conner of its ourline. This example shows that a profile created on a WORK PrANE that lies on a global plane will be place on top of the cunves used to create it.

The second exauple, shown in FIGURE 9, is of a profile created for the rear leg of the new support that extends into the negative Y half of the global 3D space. This shows that with the WORK_PLANE still laying on the global XZ plane, the resulting profile is not positioned an the geonetry used to create it. It is correct. But, the solid that was created through the extrusion of this profile required orientation.

SDRC I-DEAS 4.1: Object Modeling DATABASE: MEU SURFACE UHIT SUPPDRT DESIGM - JEFFREY A. XERM UIEU : SUPT ISU (modified)

$$
\begin{aligned}
& \text { 10-JAN-91 21:28:46 }
\end{aligned}
$$

SDRC I-DEAS 4:1: Object Modeling database: MEL supface unit support design - jeffrey a. kerm UIEU : SUPT ISD (modified) Task: PROF ILE
Profile: $2-P R O F I L E 2$

10-JAN-91 21:48:37
UMITS : IN
Warkset: 34-5ITPLE : MEL Stored OPTION Skin: Ma current SKIM GROUP (modi
Sxist

FIGURE 9. - SECOND SAMPLE PROFILE

CHAPTER V

SOLID MODEL CREAIION

Abstract

INIRODUCITION The methods for constructing solids were identified in Chapter 2 as: creation of basic solids, or "primitives" (blocks, cones, cylinders, spheres, and tubes); creation of user defined solids through the extrusion and revolution of 2 D profiles; and the combination of these subparts with joining and cutting operations. These methods are described in Appendix VIII, and the solids that were created for this project will be discussed are discussed in this chapter.

SURFACE UNIT SUPPORT SOITD YODEIS

Solid models were created for each of the pieces of the old support and new support designs. Profiles were created of the side views of each straight section of the support pieces, and of the top views of their bends. These profiles were extruded to create parts of each support piece. Then the parts where JOINed to form the complete pieces. The tines, which are used to crimp the supports to the heater, where created as standard solids. They where then oriented at the proper positions on the support pieces, and CUI from the basic supports, and then JOINed to them.

Figures 10. through 13. show the solids created of the for piece parts that make up the old support design. Figure 21. shows the old support assembly. It was created by orienting the three pieces properly in 3D space, and then JoINing them together. This was done to produce a complete assembly which could be used for the developnent of a finite element analysis (FEA) model for structural analysis of the old design. A system assembly could also have been created of this assembly to analyze is assembly and mechanical properties, as will be discussed in the chapter on SYSIEM ASSEMBLY.

Figures 14. and 15. show the solids that were created for the new support design, and Figure 16. shows them assembled.

SDRC I-DEAS 4.1: Object Modeling database: meu surface unit support desigh - jeffrey a. kerm OATABASE: MEU SURFACE

FIGURE 10. - OLD SUPPORT'S PART 1 SOLID

SDRC I-DEAS 4.1: Object Modeling ORTABASE: NEU SURFACE UHIT SUPPORT DESIGH - JEFFREY R. KERH

FIGURE 11. - OLD SUPPORT'S PART 2 SOLID

SDRC I-DEAS 4.1: Object Madeling DATABASE: NEU SURFACE UHIT SUPPORT DESIGN - JEFFREY A. KERN JIEU : 4, 8, 4,
ab.ifect: 15-SUP COIL 8* pae3 (nodifi

$$
\begin{aligned}
& \text { 10-MAR-91 11:32:24 } \\
& \text { D1splay: nons, nane, nome, nome }
\end{aligned}
$$ Bins 2-8inch

FIGURE 12 . - OLD SUPPORT'S PART 3 SOLID

SDRC I-DEAS 4.1: Object Modeling database: mel surface umit gupport design - jeffrey a. kern DATABASE: MEL SURF ACE
ab jask: 0BJECT

FIGURE 13 . - OLD SUPPORT ASSEMBIYיS SOLID

SDRC I-DEAS 4.1: Object Modeling OATABASE: MEL SURFACE UAIT SUPPORT DESIGN - JEFFREY R. KERH Tosk: 0BJECT ${ }^{4}$ Ob lect: 24-MEU SUPPORT FROMT (modir

11-MAR-91 08:12:00 015PLAY : none, none UNITS : IN Bin: 2-8IMCH

FIGURE 14. - NEW SUPPORT'S FRONT PART SOLID

SDRC I-DEAS 4.1: Object Modeling
DATABASE: NEU SURFACE UMIT SUPPORT DESIGN - JEFFREY A. KERH UIEL Toski OÁJECT ${ }^{8,15}$

Oh.ject: $25-H E t$ SUPPORT REPR (modifi

11 -MAR-9 1
units: It Bins 2-8inch

FIGURE 15 . - NEW SUPPORT'S REAR PART SOLID

SDRC I-DEAS 4.1: Object Modeling OATABASE: MESH SUAFACE UHIT SUPPORT DESIGH - JEFFREY R. KERM 11 -MAR-91 08:47:55
0ISPLAY : none, mana none, mant
 Bin: 2-8inch

FIGURE 1'̄ . - NEW SUPPORT'S ASSEMBLY SOLID

CHAPIER VI

ASSEMBLY MODEETNG

INTRODUCITION

Chapter V discussed the solid models created for this thesis. In that discussion, several abjects were combined, using the JOIN command, to form larger objects. For this thesis, each of the surface unit supports' individual pieces were joined into complete support assemblies in this manner. Thus, the surface unit supports can now be treated as single objects. Therefore, these solid models represent the camplete support assemblies' weight, material volume, and center of gravity, etc.

But, in general, when a system is being designed the logical progression is to first design individual components, then cambine the couponents into subassemblies, and finally, cambine the subassemblies into camplete system assemblies, and investigate their properties. This is the methodology applied in the structure of the I-DEAS Solid Modeling family of program modules. The previous chapters in this text have Covered the use of I-DEAS Solid Modeling's Object Modeling to create individual components, as solid models. Appendix IX is devoted to the description of work done with I-DEAS Object Modeling's Assembly Modeling commands. With these commands, the individual piece of the surface unit supports, and complete heater assemblies were assembled as that would be if they were not need as combined objects for the FEA analyses.

SURFACE UNIT SYSIFM ASSWYBLTES

System assemblies were create for the surface unit assemblies, using the old and new support assemblies. Tables 1. and 2. show the hierarchy listing for these system assemblies.

TABLE 1. - SYSIEM ASSEMELY HIERARCHY FOR THE OLD SURFACE UNIT ASM

TABLE 2. - SYSTEM ASSEMBLY HIERARCHY FOR THE NEN SURFACE UNIT ASM

Figure 17. shows the old surface unit assembly that was created with the system assembly hierarchy listed on Table. 4. The new surface unit assembly was constructed with the hierarchy listed in Table 5. It is displayed in Figure 18.

Figure 19. shows an example of an exploded view created with the ORIENT coumands. It displays the new surface unit assembly exploded along the 2-axis.

SDRC I-DEAS 4.1: System Assembly OATAOASE: HEU GURFACE UNIT SUPPORT DESIGM - JEFFREY A. KERM VIEL TESK: SU ASHISO
Task: HIERARCHY
Systam: fi-OLD SURFACE UNIT ASM

FIGURE 17. - SYSTEM ASSEMBLY OF THE OLD SURFACE UNIT ASSEMBLY

SDRC I-DEAS 4.1: System Assembly
20-MAR-91 08:43:00 OATARASE: MEU SURFACE UMIT SUPPORT DESIGM - JEFFREY A. KERN
UIEG
UIEH : SU ASH ISO (modified)
5yotom: 2f-HEU SURFACE UNIT ASH (mo
OISPLAY: No stored OPTIOM omponent: Mo starad carponent

FIGURE 19. - EXPLODED VIEW OF THE NEW SURFACE UNIT ASSEMBLY

CHAPIER VII
SOLID MODEL DISPLAY

INTRODUCTION

Appendix VII discusses the I-DEAS View commands. With the use of those functions the author was able to custamize the display of entities created with the I-DEAS system for viewing on a terminal's graphics display screen. But, I-DEAS offers even greater flexibility in the ways in which entities can be displayed via the coumands that are presented in the DISPLAY_OPIICNS and DISPIAY_ATIRIBUIES (or SUrface Appearance) menus that are located in each Task of the software.

DISPLAY OPITONS GYYMANDS

Appendix X contains discussions covering the display commands that were used for this thesis. There are four major display types that can be procuuced in I-DEAS, which are called: LINE, HIDDEN LINE, BOUNDARY, and SHADED displays. Each are discussed in Appendix X. Figure 20. shows a cube displayed using one of each of these display types in its four viewports. The most complex of the four display types is shaded images. Among the many options described in Appendix X for shaded images, one of the most interesting the display of solid models that appear to be translucent. Figure 21. shows the use of TRANSLUCENCY.

SDRC I-DEAS 4.1: Object Madeling OATABASE: MEL SURFACE UNIT SUPPRRT OESIGM - JEFFREY A. KERI

7-JUM-91 12:56:21 DISPLAY: 10, 11, 12; : IM

FIGURE 20. - DISPLAY OPTIONS: LINE, HIDDEN, BOUNDARY \& SHADED

SDRC I-DEAS 4.1: Object Modeling database: mel surface unit support desigm - jeffrey a. kert UIEU : ISD (modified)

19-JUN-91 21:39:02 DISPLAY : SHADED A TRAMSPAREMT (modifled) Objact: 2-8RLL2

FIGURE 2.1 . - SHADED IMAGES WITH TRANSLUCENCY

CHAPIER VIII
 2D CAD DRAWINGS

INTRODUCIION

I-DEAS provides a software Family within the main program called DRAFITNG. As introcuced in CHAPIER 1, DRAFTING can utilize the 3D geanetry from solid models for the creation of 2D CAD drawings. It can also be used to create drafting style drawings directly, in the same manner as with any good 2D CAD package.

DRAWING OF THE NEW SURFACE UNDT SUPPORT

In general, at GEA a Designer in the CAD department is assigned to create the production drawings for products and components manufactured by GEA. But, in cases where parts are sourced fram outside suppliers, the suppliers are usually responsible for producing the detailed drawings. In these instances, GEA will usually then take the suppliers' drawings, and after they have been approved, they will be duplicated on a GEA drawing format and released for production. These drawings may only display the dimensions that are critical to the parts usage and quality control.

Four drawings were created for this thesis using I-DEAS DRAFrING. This was done because the parts were being submitted to outside suppliers for quotation. This required "sketches" of the two pieces of the support, for the center trims, and for the complete support assembly. Because the parts had been completely designed using the I-DEAS Solid Modeling system, it was decided that it would be easy to quickly detail the solid models on full drawing formats to provided these "sketches". In parallel, the geanetry from the solids were transferred to the CAD department (as discussed in the next chapter) for detailing of actual proctuction drawings, so that GEA's Calrod Heater Manufacturing Operation could also prepare quotations for their manufacture within GEA.

Figures 22. through 25. display the I-DEAS DRAFIING drawing or "sketches" that were created.

CHAPIER IX

PRODUCIION (CALMA) DRAWINGS

Abstract

INTRODUCITION Chapter VIII discussed the preliminary engineering drawings for the new surface unit supports that were produced with I DEAS DRAFTING. But, it is also possible to transfer solid models' geanetry from I-DEAS Solid Modeling to other CAD software packages for detailing. At GEA, production drawings are created using Calma DDM CAD software by the CAD Department's Designers. Therefore, in cases where GEA engineers have designed parts using I-DEAS Solid Modeling, it can be advantageous to transfer the geanetry from I-DEAS to Calma. This allows a CAD Designer to bring the engineer's part gecmetry into Calma drawings. The Designer can then camplete any unfinished designing, and then detail production drawings of the parts transferred. The operations required to transfer solid models' geometry to Calma are discussed in Appendix XI.

DRAWING OF THE NEN SURFACE UNIT SUPRORT

The geometry from the new surface unit support's solid models were transferred to Calma. Then GEA'S CAD Department created four detailed production drawings for this work using Calma DDM and transferred gecmetry. Figures 26. through 29. display these Calma drawings.

FIGURE 26. - CALMA DRAWING OF THE NEW SUPPORT ASSEMBLY

FIGURE 27. - CALMA DRAWING OF THE SUPPORT'S FRONT PIECE

FIGURE 28. - CALMA DRAWING OF THE SUPPORT' S REAR PIECE

FIGURE 29. - CALMA DRAWING OF THE SUPPORT'S CENTER TRIMS

CHAPTER X

I-DEAS FEA FREPROCESSSNG

INTRODUCITIG

The primary purpose for this thesis was to determine the relative strength of the new surface unit support compared to the old support, through the application of finite element analyses. The analyses performed were static loads applied to FEA models of the supports, simulating a standard "load test" which GFA has historically used to compare the relative strengths of surface unit supports.

GEA's standard surface unit load test subjects mits to cyclic application of electrical of power, while losded statically with twentyfive pound (25 lbs) pots of water. The electrical power (260 volts) is cycled 60 minates an and 20 minutes off, for 1000 on hours with one pot, and then for an additional 1000 hours with a second pot. One pot has a concave bottom and the other has a convex bottom. The static loads are comprised of the pots' and water's weights plus enough lead and steel weights added to yield the total 25 pounds.

The load test was designed to simulate a "life time" of use by an avid "home camer". The use of surface units for camning is the "worst case" application of the units, involving heavy static loads, which is condoned by GEA. The use of surface (and oven) heaters without loads for space heating of a rocm is worst for the heating coils, and users
are warned not to do this in the Use $\&$ Care instructions included in the electric ranges sold by GEA.

The pots conssmers use in the preparation of camned fruits, meats, and vegetables often have corrugated bottans which make poor contact with the surface units' heating coils. This creates thermal variations in the unit's heater coil and can cause distortion of the coil. This, combined with the fact that few household cooking utensils have truly flat bottons, is the reason for the use of concave and convex pots during for the load test. But, since the positions of the new support's "tines" (used to crinp the supports to the coils) are the same as the old support's, this effect was not analyzed. Thus, the final FEA analyses were performed with uniformly loaded flat plates. These plates were coupled to the supports' models with gap elements, which transferred the plate loads to the supports in the same way that utensils" weights are transferred to surface unit supports through the heating coils, which make point contacts with the supports.

Also, the material used for the supports is stainless steel. The alloy's properties do not vary significantly within the range of operating temperatures, and the supports' temperatures are reasonably uniform during this test. Therefore, no thermal loading was modeled.

FEA models were constructed for both eupport designs using I-DEAS' Engineering Analysis Family. This is discussed in this chapter. once models were constructed, they were transferred to ANSYS for final preprocessing, and for FEA solutions, as described in Chapter XI. Several finite element mesh sizes were applied to the models under simple static loading to optimize the number of elements used versus the size of the model files, couputation times, and accuracy of the results.

This is discussed in Chapter XII. Simple experiments were performed on sample supports of both designs to verify the accuracy of the FEA results, as detailed in Chapter XIII. Finally, FEA was used to simulate the load test, as discussed in Chapter XIV; and the complete projects' results were sumarized in Chapter XV.

I-DEAS FINTITE ETEYMENT ANATYSTS

I-DEAS Preppocessing was used for building FEA models of the new and old supports based on the solid modals produced of them in I-DEAS Solid Modeling, Object Modeling Module. Also, I-DEAS Post Processing Module was used for display of the model solutions which were run with ANSYS programs.

The I-DEAS Engineering Analysis finite elements Model Solution Module was not used to produce the solutions to the static analyses performed. ANSYS was used instead, because of its extensive power in solving complex problems, and because ANSYS is the primary FEA tool used by GEA to perform finite element analyses. But, I-DEAS Engineering Analysis Model Solution is capable of solving linear static, dynamic, heat transfer, forced response, and potential flow FEA models. Therefore, although the I-DEAS Model Solutions Module was not used for this thesis, and will not be discussed further, in the absence of ANSYS, or in cases which can be handled with I-DEAS' scme what limited element library and solution types, it could be used to solve many FEA models.

TYPE OF FEA YODETS AND ANALYSES TO BE CONSIUTUCTED AND PERFORYIDD

Before the finite element models were constructed for this thesis, it was necessary to decide what type of FEA models and what type of
finite elements would be best suited for the analyses that were to be performed. For this thesis, "shell" FEA models were used. Their finite element meshes (planes of nodes and elements) were placed at the center lines of the material thickness, or "web", of each piece of the surface unit supports. Shell models require the application of "area" elements, which are planner, and contain information about the thickness of the elements (i.e., the thickness of the supports).

For this thesis, only static analyses were performed. The specification of the analysis type, done in ANSYS with the "KAN" command, is discussed in Appendix XIII.

Because I-DEAS was used for pre/post processing, the analysis type did not need to be specified in I-DEAS when the models were constructed. But, the analysis type did need to be kept in mind when the element types were determined.

For this thesis, CUADRIIATERAL SHELL elements were selected as the element type which were best suited for the analyses to be performed. These were selected because they are AREA 3D elements which can be used to analyze the stresses, strains, and displacements which result from bending of a flat objects caused by in-plane loading. In I-DEAS, in order to epecify CUADRIIATERAL SHRIL elements, the THTN_SHEIL element family's, IINEAR element ocder, CUADRITATERAL element topology was established as the dafault element type for the surface unit supports.

MPSH AREAS

The models created for this thesis were constructed through automatic meshing of FREE_MESH areas.

Some difficulty was encountered with fatal errors in the solutions of the initial models created. These errocs were labeled as "POSIIIVE PIVOIS". This would genercally indicate that the models were improperly constrained, resulting in their attempting to translate or rotate in free body motion through space.

After many changes were tried in attempting to eliminate these errors, wasting countless hours of analysis time, it was discovered that the actual cause for the errors was elements with interior angles that were not close enough to 90°. These where created by the autanatic meshing of mesh areas which spamed the entire straight length of each piece of the surface unit supports; including their ends, which have $0.106^{\prime \prime}$ steps at the bottom (to rest in the surface unit trim rings on the electric range tops). Once this was determined, the mesh areas were subdivided to create separate mesh areas for the $0.500^{\prime \prime}$ and $0.394^{\prime \prime}$ wide sections of the supports, and in the areas of the support pieces that are overlapped by other pieces (which is displayed later in this chapter). This forced the automatic mesh generator to create regularly shaped elements, and aided in the menging of "walded" nodes (which is described later in this chapter). This resulted in the elimination of the errars.

This emphasizes the care that must be exsercised in "planning the mesh areas to prevent the creation of overly distorted elements", as mentioned above. I-DEAS automatic mesh generator is very useful for meshing FEA models, but it can't prevent the user from specifying meeh areas which will result in models which can not be properly solved.

GFCMETLY DEFTNTUTICN

Since mesh areas are constructed through the selection of closedlocps of geametric curves, it was necessary to define the geometry from which these curves were selected. The geometry of the I-DEAS solid models were too complex for direct use in the construction of FEA models. The solids' conters that were rounded to represent the physical parts, were not rounded in the FEA models. Also, in construction of the shell FEA models, mesh areas were needed on web of the parts assembled in the solid models, rather that on the models' exterior surfaces.

Therefore, two basic working sets were constructed for use in this thesis. One for the new support and one for the old support, including the gecmetry for a plate for use in loading each. I-DEAS Engineering Analysis' commands were used to create working sets from the solid models that were created of the entire sumports (see Chapter V and Appendix XIII). Figures 30. and 31. show the working sets that resulted from these operations.

Once these initial working sets were created, points were created, by interpolation halfway between existing pairs of points, for the end points of the mesh areas needed at the web of each support piece. All the new points created were made a different color than those I-DEAS generated from the solids. In this process, the tines, used to crimp the supports to the heating coils, were eliminated. This was done based on an assumption that the tines would have a negligible effect on the strength of the sumports. Similarly, the holes that were designed into the new support and slit ribs that exist in the old support, for the attachment of their center trims, were ignored when theses working sets were refined. Also, the rounded corners were squared off to 90° angles.

SDRC I-DEAS 4.1: Pre/Post Processing patabase: MEL SURFACE UMIT SUPPORT DESIGM - JEFFREY A. KERR UIEU : FEA ISO (nodified)

7-APR-91 22:34:56 oISPLAY : No stored opition

$y^{Z} x$

FIGURE 30. - INITIAL OLD SUPPORT'S FEA WORKING SET

SDRC I-DEAS 4.1: Pre/Post Processing OATABASE: MEU SURFACE UMIT SUPPORT DESIGN - JEFFREY A. KERN VIEU : FER ISO (nodifled)

FIGURE 31. - INITIAL NEW SUPPORT'S FEA WORKING SET

After the points had been created at the web of each support piece, lines were created connecting them. These lines were eventually selected when the boundaries of the mesh area were created. A different color was used for each piece on the supports (i.e., three colors for the old support and two colors for the new support), to aid in seperation of the individual pieces in later steps in preprocessing of the FEA models.

After the lines were created, the geanetry for the web of each support piece was camplete. The supports' exterior geanetry (from their solid models) was deleted from their working sets. Then, each piece's web geometry was translated so that each piece touches the adjoining the piece it is welded to in the assembly of the supports. This allowed the pieces to be "welded" together in the FEA models by combining overlapping nodes at the weld points, which is describe further, later in this chapter.

The next item needed in each of these working sets was the plate with which the supports' FEA models were loaded. These plates were constructed by creating points (using a new color) above the ends of the supports, the center of the new support, and intersection of the old support's delta section supports. These points were then connected with lines. Next, the perimeter of the plates was constructed by creating one continuous circle around their perimeters through the three points above the ends of the supports. Then three arcs were created which span between the lines above the supports' legs, and the complete circles were then deleted. This completed the construction of the geametry needed for the supports' and plates' FEA models. These are displayed in Figures 32. and 33.

SDRC I-DEAS 4.1: Pre/Post Processing database: meu surface unit support design - jeffrey a. kerm UIEU : FEA ISO

$y^{2} x$

FIGURE 32. - TEMPORARY OLD SUPPORT'S FEA WORKING SET

SDRC I-DEAS 4.1: Pre/Post Processing patabase Med surface unit support desiem - Jeffrey a. kern UIEU : FEA ISO

FIGURE 33, - TEMPORARY NEW SUPPORT'S FEA WORKING SET

FHYSICAL AND MRATERTAL PROPERTIES TABLES

Before the mesh areas and finite elements could be created, Material and Fhysical properties tables needed to be constructed for the supports and the loading plates. This involved the specification of the desired properties for the supports' stainless steel, and of a material for the loading plates. It was decided that an aluminum alloy, typically used for household kitchen cooking utensils, and more specifically for the load test's pots, would be used for these analyses.

Both the supports' stainless steel and load plates' aluminum materials were specified as ISOIFOPIC. Then two material properties tables were created, one for the supports and one for the load plates. The material properties used for these analyses were taken from the material properties tabulated in the Materials Engineering, Materials Selector $1990 .{ }^{11}$

The surface unit supports are made with a stainless steel alloy. A material properties table was created to store the properties for this material. The CREATE command was used to specify that this material is ISOIROPIC, and it was named "SIAMNLESS SIEEH ALIOY". The properties used were: 28E06 pai, for its modulus of elasticity; and 0.29, for its Poisson's ratio.

The material selected for the load plates was aluminum, alloy 3003. This was chosen based on its typical use for cooking utensils, as listed in the Materials Selector. ${ }^{12}$ A material properties table was created to store the properties for this material. The CREATE coumand was used
11. Materials Selector, Materials Engineering magazine, Penton Publishing, Inc., December, 1989, p. 48.
12. Ibid., p. 78.
to specify that this material is ISOIROPIC, and it was named MALININMM ArIOY 3003". The properties used were: 10E06 psi, for its modulus of elasticity; and 0.334, for its Poisson's ratio.

After the materials tables were created, the physical properties tables needed to be created. For the shell elements that were applied in this thesis, the only physical property that the elements required was their thickness. The PHYSICAL PROPERIIES, CREATE Conmand was used to create two physical properties tables, one of the supports and one for the load plate. The supports' table was named "SU SUPT THICKNESS", and their thickness was specified as 0.050 " with the $" 1{ }^{\text {st }}$ value for thickness". The load plates' table was named "LOAD PLAIE THICKNESS", and 0.100 " was specified for the " 1 st value for thickness".

CREATION OF THE MESH AREA

Once the material properties were defined, the MESH_GENERATION Task's commands were used to create the mesh areas at the support pieces' webs. All of the mesh areas for an individual support pieces were created, using a different color for each piece of the supports. This aided in the separation of the support pieces during later stages on the analyses.

When the mesh areas were created, care was taken that the loops of curves selected were always made in a consistent direction of rotation around the mesh areas' boundaries. "Counter clockwise" rotations were used. Although this direction depended on the way the models' geometry was being viewed, it was the consistency that was important. This effects the direction of the positive normal surface vector which the program defines for each element. The normal vector determines which
sides of the elements are considered the top and bottom surfaces. This is important for the support models' elements, because it effects the positive and negative signs placed on the stresses and strains that are computed in the solution of the FEA models under load. It also effects the side and direction of the surface loads which were applied to the plates' elements during the simulation of the load tests (Chapter XIV). Figures 34. and 35. display the mesh areas that were created for the temporary FEA models of the old and new surface unit supports.

MUTHTPLE FEA MODETS

Once the supports' and load plates' mesh areas had been added to the basic FEA models, I-DEAS automatic mesh generator was used to create the nodes and elements on the mesh areas. Several mesh sizes (i.e., several sizes of elements) were applied to each model to optimize the mesh used for the load test simulation. This is discussed in Chapter XII, and the load test simulation is discussed in Chapter XIV. In order to create several models fram the same mesh areas, the two temporary models were copied into other (new) models.

In order to be able to distinguish the nodes and elements associated with each of the supports' pieces and the load plates from each other, different colors were used for each piece.

AUMOMATIC MESH GENERATION

Having made all of the preparations for the autamatic generation of the nodes and elements, the model's mesh areas were meshed. The mesh areas were selected by color, meshing each piece of the model individually. I-DEAS then meshed the specified mesh areas.

SDRC I-DEAS 4.1: Pre/Post Processing DATABASE: HEL SURFACE UNIT SUPPORT DESIGM - JEFFREY A. KERM IEU : FEA TSO

FIGURE 34 . - TEMPORARY OLD SUPPORT'S FEA WORKING SET

SDRC I-DEAS 4.1: Pre/Post Processing OATABASE: MEL SUPFACE UMIT SUPPORT DESIGM - JEFFREY A. KERM UIEL : FEA ISO

FIGURE 35 . - TEMPORARY NEW SUPPORT'S FEA MESH AREAS
"THETDTNG" THE SUPRORI PIECES TOGETHER
The shell FEA models of the individual pieces of the surface unit supports could have been left separated by one material thickness (i.e., one half material thickness per piece the each pair of overlapping weld joint). If this was done, pairs of nodes on the joining pieces could have been coupled together. This would have forced nodes at the supports physical welds to translate and rotate together. This was initially tried. In attempting to eliminate the "positive pivot" errors discussed earlier in this chapter, it was thought that some twisting of the loaded models was resulting from this type of weld simulation. An assumption was then made that the shell models of the individual pieces could be moved together (i.e., by 0.050"), and the pairs of nodes at the weld locations could be merged to simulate the welds, with negligible effects on the displacement and stress/strain solutions to the models. This is why the mesh area were moved together. Therefore, at this point in the FEA modeling the "welded" nodes were merged.

Figures 36. and 37. show the nodes that were "welded" for each of the surface unit supports, as described above. The number of welds was identical in each of the duplicated models created of the two supports for the investigation of various mesh sizes. Also, the location of the welds were maintain as closely as the mesh sizes tried would allow.

RESTRATNING_THE_EEA YODEIS

Once the FEA models had been constructed, it was necessary to restrain them so that they could be loaded. The restraints needed to model the manner in which the surface unit supports would be restrained by the trim rings on a range top. These trim rings restrain the surface

unit supports fram moving in the vertical, z - direction. They also prevent them from rotating, due to the friction between the supports knife like edges and the trim rings supporting surfaces. Therefore, since the supports were to be loaded in the vertical direction only, and because the trim rings restrain them from rotating, it was decided that the FEA model's nodes' definition and displacement coomdinate systems should be converted from Cartesian to Cylindrical systems; allowing the supports' restraints to be created in Global Cylindrical coordinate directions.

After the nodes coordinate systems had been modified, the supports restraints were created. For the surface unit supports, it was decided that they should be restrained at the extreme ends of the supports. In reality, the supports are rounded at the ends, and the trim rings will make more than point contact with the bottan edges of the supports' ends. But, the worst case was modeled, and this was done consistently for both support designs. Therefore, an "END RESIRAINIS" restraint set was created for each of the FEA models of the supports. The restraints in these sets were placed at the support legs' end nodes on their bottom edge. The restraints were nodal displacements with values of zero in the radial and vertical cylindrical coordinate directions, and all other translations and rotations were set free. Figures 38. and 39. display the restrained models.

IOADING OF THE FEA YODETS

After the models' were restrained, the next step in the I-DEAS preprocessing of the supports' FEA models was the application of static loads. The support models were loaded with NODAL_FORCFS which totaled

SDRC I"DEAS 4.1: Pre/Post Processing DaTapase meu suprace unit support oesicm - Jefrrey a. kern UIEG: FEA ISO

FIGURE 38 . - OLD SUPPORT'S FEA MODEL RESTRAINED

SDRC I-DEAS 4.1: Pre/Post Processing DATABASE: MEU SURFACE UNIT SUPPORT DESIGM - JEFFREY A. KERM UIEU : FER ISO (nodified)
rask: Analyis Tases
Madol:
T-NE SUPT

FIGURE 39. - NEW SUPPORT'S FEA MODEL RESTRAINED
fifteen pounds (15 lbs) in the negative vertical (Z) direction, for the FEA solution runs that were used to determine what mesh size would be used in the load test simulation. This is discussed in Chapter XII. The support models were loaded via their comection to the load plates with gap elements, for the FEA simulation of the load test. The plates were loaded with elemental FACE_PRESSUREs, which yielded a net twentyfive pound (25 lbs) vertical static load on the supports. This is discussed in Chapter XV.

ANALYSIS CASE SEIS

The next step in I-DEAS preprocessing of the FEA models was the creation of analysis case sets. For this thesis, each case set created contained an "END RESIRAINIS" restrain set, and one load set, which was either named "CENIRAL 15* LOAD", "25* PLATE LOAD (. 448944575 PSI)", or "25: PLATE LOAD (. 3432142 PSI)". The twenty-five pound plate loads required different pressure loads applied to the plates for the new and old supports. This was because the diameters of the plates matched the radius of circles that circumscribed the points at the ends of the supports, and the new surpport was designed to be slightly larger than the old support, to better fill the trim rings in which they rest on electric range tops.

haVE ERCNT OPTIMITATION

In an attempt to reduce the computer memory required for the solution of the FEA models created for this thesis, the "wavefront size" was optimized for each model. The was done with I-DEAS' OPIIMIZE WAVEFRONT command, which autamatically optimizes the model's wavefront size.

To verify that this has been executed properly, the CHECK WAVEFRONI_SAT comuand can be executed on each model.

TRANSFER OF THE MODETS TO ANSYS

Once the each FEA models was constructed, a case set was created for each, and its frontwidth was optimized, it was transferred to ANSYS for final preprocessing, and sukmittal to the ANSYS solution program.

For this thesis, the ANSYS imput files were given the names: N112, N116, N120, NPLATEG, O112, 0116, 0120, and OPLAITEG. These names helped to distinguish between the models that were created of the new and old (i.e., either N or 0) surface unit support designs. The numbers in these names distinguished them base on their mesh size (e.g., 116 was for the models with a $1 / 16^{\prime \prime}$ mesh size); and the files with PLAIEG in their names represented the FEA modes containing the load plate models coupled to the supports' models with gap elements.

Having written out ANSYS imput files to the VAX computer disk directory, this work was ready for the next step, which was file editing and ANSYS preprocessing. This is discussed in the next chapter.

CHAPIER XI
ANSYS FEA PREPROCESSING

Abstract

INIRODUCITON The proceeding chapter discussed the prepprocessing work that was done in I-DEAS to produce FEA models of the new and old surface unit supports. At the end of Chapter X the models had been written out from I-DEAS as "ANSYS PREP7 input files". In this chapter, ANSYS preprocessing is discussed, and the steps taken to make use of these files is described. A detailed discussion on the use of ANSYS preprocessing operations that were used is provided in Appendix XIII.

PREPROCPESSING

For this thesis, the FEA models had already been constructed, and preprocessed in I-DEAS Engineering Analysis; and at this stage in the analyses, they could have been transferred into ANSYS for final PREProcessing and solution. Before this was done, all of the ANSYS preprocessing procedures and ccamands were reviewed (see Appendix XIII) to determine what needed to be present in the transfer files written by I-DEAS. This was done so that they could be edited before being brought into ANSYS, to insure that the desired results would be accomplished.

TRANSFFR OF PREPC TNPUT EITES FRCM I-DEAS
After the irpurt files were edited to make the changes needed to have then conform to the steps outlined in Appendix XIII, they were ready to be transferred into ANSYS. This was done in batch mode, with the aid of a command file as discussed in Appendix XIII.

FINAL ANSYS PREPROCOSSTIMG

Once the models had been transferred into ANSYS, they were interrogated to be sure that they had been received as desired. This was accomplished with use of ANSYS' entity listing, graphical display and plotting cammands. Once the author was sure that they models were acceptable, ANSYS Analysis Files were written out for batch solution of the FEA models. See Appendix XIII for details on the operations performed.

BAICH SOLUITGN OF THE ANSYS ANALYSIS FITES

The analysis files were sulaitted to ANSYS' solution routine in the batch mode. When the ANSYS analysis solution is complete, the results are available in ANSYS FILE12.DAT (Or MDDEL_NAME. 12 when the batch cammand file is used). Once this file was obtained for each of the models solved, the results were post processed in ANSYS and then transferred into I-DEAS for final postprocessing and graphical display of the results. This is discussed in the next chapter.

POST PROCESSING OF THE FEA RESUTMS

INLRODUCTMON

When the ANSYS FEA models had been solved, ANSYS preprocessing was used to initially investigate the results. After the results had been reviewed to be sure they locked appropriate, the data were transferred back into I-DEAS for final post processing and display of the results. This last step was done because of the superior graphics display options presented by I-DEAS.

ANSYS POST PROCNSSTMG OF THE SOIMTRCN RESITIS

Once the analysis files had been solved, and the results were available in ANSYS FITET2 (i.e., MODEL NNME.F12) . ANSYS' post processing routine was used to review and display the results graphically. ANSYS' "ROSII" post proceseor was used to list and graphically display the analyees results.

FAILIRE CRTYERTCN FOR THTS THESTS

For this thesis the failure criterion ${ }^{13}$ applied to determining if the new surface unit support would perform acceptably in comparison to
13. Arthur P. Boresi, Onar M. Sidebottom, Advanoed Mechanics of Materials, Fourth Edition, John Wiley \& Sons, NY, 1985, Pp. 97 - 104.
the old suppont design was "Excessive Yielding at Ondinary Temperatures", with the yield criterion of the "maximm distribution energy theory". This required the examination of the maximum Van Mesus stresses resulting from the loading of the two surface unit support designs.

BESUTMS REYTIPNFD

For this thesis, the nodes' maximum vertical displacements, and the elements' maximm camponent, principal, and Von Mesus stresses where desired, to determine which mesh size was best suited for these analyses, and to determine if the new support's strength is acceptably in comparison to the old support design. In each case, the data was sorted to place the maximm values of the desired displacements and stress at the top of each listing. The stress data that were reviewed were the shell elements' middle (average) stresses.

Although excessive yielding was the criterion used to determine if the new support design was acceptable, it was also inportant to examine the maximu deflection of the new support in comparison to the old support. If surface unit supports defect too much, even though they might not yield excessively, this can lead to poor contact with cooking utensils, which can effect heating performance. When ANSYS reads the analysis results into mencry for post processing, the nodal displacements are autcmatically read. So, no declaration needed to be made prior to indtiating ANSYS' reading of the results.

In addition to printing out the vertical displacements and stresses, the reaction forces were also printed out to verify that their totals were equal to the losds applied in each analysis case solved.

I-DEAS POST PRDCESSTMG OF THE SOIUTICN RESUTMS

In addition to using ANSYS to process the analysis results, I-DEAS post processing was also applied. This required the results to be transferred back into I-DEAS. But, this allowed I-DEAS' superb color graphics display capabilities to be used. This required the use of I-DEAS Data Loader software, as discussed in Appendix XIV.

ANALYSES' RESUTIS

The ANSYS and I-DEAS post processing procedures outlined in this chapter (see Appendix XIV for detailed operations performed) were used for this thesis. The plots and results reports produced are displayed and discussed in the next three chapters.

FEA MESH SIZE OPITIYZATION

INTRODOCTION

As was introduced in Chapter X, the FEA models of the old and new surface unit supports were loeded with a static fifteen pound force, with various mesh sizes applied to the models in order to determine the best mesh size to use when simalating the surface unit load test. The models were prepared in I-DEAS as discussed in Chapter 10. Then they were transferred to ANSYS for final preprocessing and aolution, as described in Chapter XI. The results were then post processed with ANSYS, as described in Chapter XII.

MESH STZES TRTAT IOADED

The supports are $1 / 2$ inch wide. It was desirable to choose element sizes that would epan this width with a whole number of elements, in order to use automatic mesh genaration to produce good equare elements. Therefore, the new surface unit support's basic FEA model (mesh area model), was meshed with elements of the following sizes: $1 / 8^{\prime \prime}, 1 / 12^{\prime \prime}$, $1 / 16^{\prime \prime}$, and $1 / 20^{\prime \prime \prime}$.

Once the four meshed models of the new sugport had been constructed, each was loaded with a fifteen pound (15 1bs) static load, under the end constant conditions discussed in Chapter X. Figure 40.

FIGURE : 40 .- NIEN SUPPCRTI WILH CENIRAL FIFTEEN POUND SITAITC LOAD
shows one of the FFA models of the new surpport with the fifteen pound for solution in batch runs. The results are listed in Table 3.

TABLE 3.
FEA MESH SITE TIRLAL RESUTIS

MESH SIZE (INCH)	EITPTENIS PER WIDIH	MAX. VEFITCAL DISPLACPMENT (INCH)
1/8 (.1250)	4	0.0403
1/12 (.0833)	6	0.0459
1/16 (.0625)	8	0.0505
1/20 (.0500)	10	0.0502

MESH SITE SETECITION

It was known from FEA theory that the finer the FEA mesh, the closer the results should be to reality. But, finer meshes yield larger FEA models (i.e., greater numbers of nodes and elements), which will require more disk storage space, and longer computation times for solution. In addition, at some point, the camputational errors introduced with larger FEA matrices will cause the results to become less
realistic. Therefore, based on the results of this study, it was decided that $1 / 16^{\prime \prime}$ should be used as the mesh size for the load test simulations.

YERTFTCATION OF YIESH STZE FOR OID SUPRORT

To be sure that these same results would hold true for the FEA model of the old support, the basic modal for the old suyport was meshed using $1 / 12^{\prime \prime}$ and $1 / 16^{\prime \prime}$ mesh sizes. These two models were losied with a central fifteen pounds (15 lbs) load, applied with three five pound static loads through nodes at the split between each welded section of the support. This is displayed in Figure 41.

These two FEA models yield solution with maximum vertical displacements of $0.0212^{\prime \prime}$ and $0.0224^{\prime \prime}$ respectively. Therefore, it was decided that $1 / 16^{\prime \prime}$ elements would be acceptable for the old supports' load test simulation also.

FIGURE 41. - OLD SUPPCRT WIIH CENIRAL FIFIEEN POUND SIAAITC IAAD

CHAPIER XIV
FHYSICAL MCDEKL VERIFICAIICN

INIPODUCITICN

The FEA models that had been constructed and used to determine the optimum mesh size seemed to yield reasonable results. But, as with any FFA analyses, it was advisable to prepare simple physical experiments to verify that the model's were yielding results that were realistic of the displacements that actual surface unit supports of these designs would experience with this type of static loading. Therefore, sample supports were constructed, and tested as outlined in this chapter.

TFEST SEHUP

In order to duplicate the fifteen pound static loads that were applied to the FEA models of the surface unit supports, discussed in Chapter XIII, simple bench top tests were setup and conducted. Three large round headed, straight blade, wood screws were driven into the top of a hardwood wack bench, with their slots aligned with the legs of the surface unit supports (see Figures 42. and 43.). These were placed at the ends of the supports. But, they could not be placed at the extreme ends of the suyports exactly like the FEA models' supports, and still expect the supports to be loaded without falling between the screws. Therefore, the results of the physical tests were expected to yield

FIGURE 42. - OLD SUPPORT'S VERIFICATION TEST SEIUP

FIGURE 43., - NEW SUPPORI'S VERIFICATION TEST SEIUP
slightly smaller displacements then the FEA models, due to the screws support of the surface unit supports at points a little closer to the center of the supports.

For the old surface unit support, three holes were drilled through the work bench directly under the points an the support where its individual pieces straight sections end and the radil begin the bends into the delta shaped portion of the support (see Figure 42.). For the new surface unit support, one hole was drilled through the work bench at the center of the support's "Y" (see Figure 43.). "Piano" wires were run through these holes to load the supports. Ioops were made at the top ends of the wires, and shaped to pull straight down on the top of the surface unit supports. The bottom ends of the wires ware attached to the cap of a plastic gallon bottle, and the bottle was filled with weight and screwed onto the cap to load the supports (see Figure 44.).

A dial linear gauge with a gooseneck support and magnetic base was used to measure the surpports' displacements when placed uncer static load. The dial gauge can be seen in Figures 42. and 43. The magnetic base was attached to a heavy flat steel plate and placed on the top of the work bench. The gooseneck was adjusted, and locked into position over the sumports at the point at which the deflections were measured. The old supports' deflections were measured at a point at the center of the rear section of the delta portion of the supports between their rear legs. The new supports' daflections were measured at the center of the supports' "Y".

FIGURE 44 - BOITLE AND WIRES USED TO LOAD THE SUPPORIS OF TESTS

TVESHS PRERCRTMED

Two sanples of each surface unit sumport design were tested to be suce that there was nothing unsual about the samples' results (e.g., a support with weak welds, etc.). Each support was loaded statically with the weight filled bottle once with each of the following loads: 5, 10 , 15, 20, and 25 pounds. The bottle was loaded by removing it from the cap, filling it with weights until it weighed five pounds. Then the bottle was screwed onto the cap, and then gantly allowed to hang on the wire(s) attached to the support being tested. After the deflection was recorcled, and sufficient time had passed to be sure that the support was not yielding under the applied load, the bottle was removed. This process was repeated with the next heavier weight until all five loads had been applied to each of the four supponts tested.

TEST RESUTAS

Table 4. lists the results of the tests that were performed. From these, it was noted that the FGA models' results were indeed in line with reality. The tests indicated that the old support would deflect approximately $0.010^{\prime \prime}$ under a fifteen pound load, compared to .0224" as indicated by the FEA model. The new support design deflected approximately $0.045^{\prime \prime}$ when loaded with fifteen pounds, while its FEA model deflected .0505".

These test indicate that the FEA models are too "soft". But, the physical samples were not supported at their extreme ends. Also, their materials were not exactly $0.050^{\prime \prime}$ thick. The old supports were $0.054^{\prime \prime}$ thick, and the new supports were 0.047" thick. The FEA model's thicknesses were changed and resolved, resulting in the old support

TABLE 4.
VERIFICAIICN TESS RESUITS

model's deflection being reduced to $0.0178^{\prime \prime}$, and the new suyport model's deflection was increased to $0.0596^{\prime \prime}$. The new support's samples were made including strengthening ribs at the " Y ", and the production supports were made with production stanping dies. These details would also contribute to the physical parts being stiffer than the FEA models.

COMCIUSTCNS

In addition to the differences between physical parts and the FEA models, the FEA results were to be used to compare the relative strength of the new support design to the old design, and not strictly for their raw nemerical results. The stresses predicted by FFA models that deflect slightly more than the actual supports would be higher than reality, and thus would yield more conservative conclusions on the new support's strength in couparison with to the old support design. Therefore, the FEA models were judged to be acceptable for use in performing the load test simulation discussed in the next chapter.

CHAPIER XV
FEA ANALYSIS OF PLAYE LOADING

INIRODUCIICN

As was introduced in Chapters I and X, the primary finite element analyses that were performed for this thesis were designed to simulate a standard "surface unit load teat" that GEA has traditionally used to test different support and heating coil designs for structural integrity. In Chapter X the construction of the FEA models of the new and old surface unit supports was discussed. Also, the creation of flat "load plates" above these supports was discussed. The plates were specified as $0.100^{\text {H }}$ thick, and constructed of alumirum alloy 3003. The final steps needed in the preprocessing of the two plate loaded support models was the comection of the loed plates to the supports with gap elements, and the pressure loading of the plates. These steps are discussed in this chapter. Once these steps were coupleted, the remainder of Chapters X through XI ware followed in applying I-DEAS Engineering Analysis and ANSYS for preqoocessing, ANSYS for model aolution, and then ANSYS and I-DEAS for post processing of the results.

SETVCIICN OF CAP EK FYENT THPE

The load plates were comected to the surface unit support models using "GAP" finite elements. The reason for using gap elements was so
that when the pressure applied to the plates caused them to deflect downard against the supports, the supports could move down away from the plates, if the loads transferred to the outer contact points caused the supports to be deflected a greater distance at their center nodes the plates center nodes. If the plates had been coupled to the supports, or cormected to then with rigid spar type elements, rather than using gap elements, the plates might have constrained the supports from moving away from them. That would be not accurately model the contact between actual cooking utensils and surface units' heating coils.

ANSYS provides several gap type elements. I-DEAS' gap element type is referred to as a SIIFF52 element in ANSYS, which ANSYS calls a "three-dimensional interface" element. These could have been used here, by they are more camplex than was desired. These elements do represent two surfaces which may maintain or break contact during a model's solution, which was desired. But, they are also capable of modeling two surfaces which may slide relative to each other during the solution of the models, taking into account Coulamb friction between them. Although in reality, there is friction between cooking utensils and heating units' coils, the effect that this would have on the supports' daflections and stresses is assumed to be negligible for these analyses. This seems to be a fair assumption given that their overall deflections are relatively small, and the range of actual friction coefficients large, the smallest being quit small. Because of this, a less couplex gap element type was desired. All that was required was an element type that would transfer no force to the supports when the gap between them opened up, and that would transfer force to the supports when the plate and the gap elements were in contact.

A search of ANSYS element library indicated that the desired element type was SIIFF10, called "compression-anly epar" elements. These elements can actually be used for two purposes depending on the setting of its keyopt(3). If this is set to 1 , as was done for this thesis, the elements are campression-only spar (gap) elements. But, if keyopt(3) = 0 (its dafault), they act as tension-only spars, or as "cables", "ropes" or "chains". In cases where this is applied, these elements will only transmit uniaxial forces when they are placed in tension. But, for this thesis (with keyopt(3) $=1$), these elements could only transfer forces to the eupports when they were placed in coupression.

CONNDCTION OF THE IOAD PIATES TO THE SUPPORTS

In I-DFAS gap elements are created in the MDDEX_PREPARATION Task by setting the DEFault EIPMENT TYPE OF_ EIEMENT to GAP. I-DEAS prompts the user to specify whether the gap elements are to be NODE_TO NODE or NODE TO_GROKND. For this thesis NODE_TO_NODE gap elements were applied. After this default type was setup, the EIDMENIS CREATE Command was used to pick the nodes that were desired at the ends of each gap. Note that the nodes had to be displayed in occier to pick them as VISIBLE on the graphics screen.

The gap elements were placed at the nocies at the points the surface units' heater coils cross the surpports. Identification of these nodes was assisted by making the working set containing the arcs representing the heater coils visible prior to esecuting the ETDMENT CREATE command. Figures 45 and 46 display the support and load plate models comected with the gap elements (which are are symbolized like capacitors).
SRC I-DEAS 4.1: Pre/Post Processing

[^0]

FIGURE 46 - - NEW SUPPORT AND LOAD PLATE CONNECTED WITH GAP ELEMENTS

CORRDCITON OF GAP EI FYPNT SPPCTFICATION TN ANSYS

Because I-DEAS created SIIFF52 gap elements during the preppocessing of the models, before they were transferred into ANSYS, the transfer files were edited to change these elements from type 52 to type 10.

Once the models had been written out fram I-DEAS, edited, and read anto ANSYS for final preprocessing, the ANSYS on-line help was used to review the documentation for these elements. This was accessed by typing:

$$
\text { SIIFF, } 10 \text { <REILPN>. }
$$

This indicated that these elements have two applicable real properties, area, and gap per unit length; and one applicable material property, EX. For this thesis, the gap elements were intended to be very stiff, and small. Therefore, the real constants declaration line for the gap elements was changed to read:

$$
\text { R, 3, .049, } 0.0
$$

This specifies gap elements with the cross sectional area of a $1 / 4^{\prime \prime}$ diameter cylinder, and initially closed (i.e., no initial gaps). The material properties of the gap elements were changed to read:

$$
\mathrm{EX}, 3,0.28 \mathrm{E}+08 .
$$

This made the gap elements represent stainless steel cylinders standing on top of the supports.

APPITCATTON OF PRESSURE TO THE IOAD PRANES

These analyses required the application of a uniform pressure to the top faces of the load plates' elements, with a pressure value (in PSI) that would yield a vertical force pushing down on the plates with a total of twenty-five pounds of force. In order to determine the appro-
priate pressure value for each aupports' load plates (which have slightly different diameters), the working set's curves were made visible. Once the curves were visible, the radil of the two load plates ware measure with the GDOMEIRY DEFINIIIION Tasks IIST ENIIITY camand. This allowed the author to determine that the old support's load plate has a 4.176299" radius, and the new support's load plate has a 4.210161" radius.

Once the load plates' radil were known, the face pressure for each plate was calculated as follows:

$$
\text { for the old surpport: } \begin{aligned}
\text { FP } & =(25 \mathrm{lbs}) /\left(\text { Pi } \times(4.176299 \mathrm{in})^{2}\right) \\
& =0.456254297 \mathrm{PSI} ;
\end{aligned}
$$

and,
for the new support: $F P=(25 \mathrm{lbs}) /\left(\mathrm{PI} \times(4.210161 \mathrm{in})^{2}\right)$. $=0.448944575$ PSI.

The commands needed to apply these pressures to the load plates are located in I-DEAS Preprocessing Module's ANALYSIS_CASES Task. The SIRUCIURAL_LOADS mern was used to create a load set named "25\# PLATE LOAD (. 456254297 PSI)" for the old support's model, and a load set named "25* PLATE LOAD (. 448944575 PSI)" for the new support's model. Then the FACE_PRESSURE ccmmand was used to access the commands needed to apply the desired pressures. Its DEFFults sub-menu was used to specify the PRESSURE for each load plate, and a color for the display of the pressurces.

After the default pressure and color values had been setup, the FACE_PRESSURE CREATE Command was used to apply the constant pressure values to the upper face of each element of the load plates. Figures 47 and 48 show the pressures as they appear in the I-DEAS display.

TRANSFFR OF THE YODENS FROY I-DEAS TO ANSYS
Once the load plate's had been cormected to the aupports, and pressure loaded, the procedures discussed in chapters X and XI were followed in transferring the models to ANSYS. Once in ANSYS, the final preprocessing was completed.

PROCPDURE FOR HTFRANTVE SOUUTONS ${ }^{16}$
Because gap elements were used in these analyses, the solution of the plate loaded FEA models required iterative solutions. The gap elements are "bilinear elements". That is, they have two different stiffness values, one being zero, depending upon the relative displacement of the sugport and plates' elements. These elements have two different status conditions, open or closed. This requires the program to start with the gap elements in the closed position (as specified), and then solve the model for the first iteration. If at the end of that iteration the status of any of the gaps have changed, a convergent solution has not been obtained. In this case, the model must be solved for a second iteration, starting with the status of the gaps from the end of the first iteration. This iterative procedure must be repeated until the status of all of the gap elements is the same at the end of an iteration as they were at the beginning of that iteration.
16. Gabriel J. Dasalvo, Ph.D., Robert W. Gorman, ANSys Fngineering Analysis System User's Yamal, Swanson Analysis Systems, Inc., Houston, Pernsylvania, 1987, 2.30.1-2.30.2.

FIGURE 47. - OLD SUPPORT'S LOAD PLATE WITH PRESSURES APPLIED

SDRC I-DEAS 4.1: Pre/Post Processing DATABASE: HEU SURFACE UHIT SUPPORT DESIGM - JEFFREY A. KERH UIEU : FEA ISU

Task: Model Preparotion

FIGURE 48 . - NEW SUPPORT'S LOAD PLATE WITH PRESSURE APPLIED

In order to have ANSYS perform an iterative solution for a model, the IIER command must be exscuted before writing out an analysis file with the AFWRIIE command. The format for this command is:

ITER, NLHIER, NPRINT, NPOST.
NIIIER is the number of iterations that are to be perfocmed per load step during model solution. NPRDNT dafines the print frequency, which determines which iterations' are printed. If this is set to 1 , every iteration is printed, if set to 2 , every other, etc. NPOST, like NPRINT, determines which iterations are written onto solution FIIF12.

If the user knows that a model's solution should converge within a specified number of iterations, he can enter a positive number for NIITER. For example, if the user knows (possibly fram previous solutions of the same model under other load conditions) that if a convergent solution is not reach within 10 iterations, there must be a problem with the model. Then, by using 10 for NIIITER, he can limit the amount of computation time that might be wasted in having ANSYS attempt to solve a non-convergent model. The mociel will be iterated ten times, and the user will have to interrogate the printed or post processing data to determine if convergence had been reached before the tenth iteration.

Note that if convergence has not been reached in the specified number of iterations, the iterative solution can be restarted at the point it was left off. ${ }^{17}$ But, only if FILE or MODES_NANE.FO3 (e.g., N116.F03) if the batch command file was used to access ANSYS for solving the FEA models, remains in the users disk directory. Therefore, if an iterative solution is being run, it may be in the users best interest to
17. Tbid., 2.23.
specify that all files except the model and solution files should not be deleted at the end of the batch solution run, so that FIIE 3 will be available for a restart. The ANSYS Engineering Apalysis System User's Mampal, page 2.23 should be consulted if a restart is desired.

ANSYS provides a special feature to assist the user in specifying the number of iterations, which it calls the nonlinear convergence criteria. The user may enter a negative value for NIITER. Then, when the iterative solution is rm, a maximum of |NHITER| iterations will be performed for each load step. But, if the solution convenges before this maximum namber of iterations, the iteration process will be stopped. At that point, ANSYS will perform a partial iteration, identified as iteration |NIITER|, to output the results. When this option is used, all post data controls default to |NIITERR|.

ANSYS also makes it easy for the user to specify the converged iteration when retrieving the results into POSTI for post processing. The SEF command discussed in Chapter XII, which is used to extract the requested results from the solution file and store them in memory for post processing, can be used with 0 entered for ITER. This cause ANSYS to automatically locate the last itaration in the results file for the load step specified and store that iteration's in memory for post processing. For example, if NIITER is entered as -10, and the convergent solution was resched at iteration 6, by entering:

$$
\text { SEP, 1, } 0
$$

in POSII, the results from the sixth iteration will be retrieved.

PLANE IOAD ANALYSIS RESUTMS

The iterative solutions to the plate loaded modals with gap elements comecting the load plates to the supports both converged in less than ten iterations. The old support required six iterations bafore the gaps' status (i.e., staying closed or open) remained unctianged from the start to the finish of the iteration. The results of these analyses definitely show that gap elements, rather than rigid links, were needed between the plates and the supports. The final status of the gap elements was checked in ANSYS post processing by entering:

SIRESS,GAPS,10,6 <REHURN>, SEF 〈REHURN〉, ESEL,TYPE, 2 <REIUPN>, PRSIR,GAPS <REFUEA>.

The status of the STIFF10 gap elements is 1 when they are in compression, and 2 when they are open. The old support had only 7 of its 21 gap elements closed and the new support had only 6 of its 18 gap elements closed when these models were solved.

The maximun vertical deflection calculated for the supports were $0.012^{\prime \prime}$ for the old support and $0.015^{\prime \prime}$ for the new support. Figures 49 and 50 show the displacement plots of the supports under these loading conditions. The SCAIE_OF_DISIORIICN factor in these plots is $10: 1$. Therefore, the displacaments shown are ten times the actual displacements, with the support's (1/2" wide) to scale.

For the old support under these loading conditions, the FEA model's solution yielded: a maximm Maximm Principal stress (SIG1) of 3,360 psi; a minimum Minimum Principal stress (SIG3) of - 7,049 psi; and a maximum Von Kises equivalent stress of 8,076 psi.

SDRC I-DEAS 4.1: Pre/Post Processing oftrbase: fed results from plate lording of olo dsupport - J.a.kerm UIEL Task: Post Processing Model: 1-FE TODEL

5-JUL-91 10:38:13

orsplay : No stored arfition
Assaclated Horkset: 1-warking_seti
OLD SUPT W GAPPED PLater
LOADCASE: 1
DISPLACEETENT

SDRC I－DEAS 4．1：Pre／Post Processing
5－JUL－91 10：02：19 oISpLay ：No stored aptíion DATABASE：FEA RESULTS OF PLATE LOAD OM MEL SUPPORT－J．a．KERM
UIEL Task：Sast Processing

```
Model：1－FE MODEL 1 LOADCASE： 1 NEW SUPT U GAPPEO PLATE LQAD－J．A．KERN
``` Associoted Horkset：1－LORKIMG＿SETI DISPLACEMENT－MAG MIN：5．日GE－日5 MAX：1．8日E－日E


FIGURE 50．－NEW SUPPORT＇S DISPLACEMENTS UNDER 25 LBS PLATE LOAD

For the new support under these loading conditions, the FEA model's solution yielded: a maximul Maximm Principal stress (SIG1) of 3,976 psi; a minimm Minimum Principal stress (SIG3) of - 7,110 psi; and a maximm Van Mises equivalent stress of 8,147 psi.

Principal stress reports from I-DEAS post processing sessions are listed in Appendix VII. Figures 51 and 52 show stress contour plots of the Von Mises stress values calculated at the shall element's middle surface for each of the two support designs.

FIGURE 51. - OLD SUPPORT'S VON MISES STRESS CONTOURS

SDRC I-DEAS 4.1: Pre/Post Processing database: fea results af plate laad an meu support - J.a.kerh UIEH : 1, 1, 1

FIGURE 52. - NEW SUPPORT'S VON MISES STRESS CONTOURS

CRAPIER XVI

\section*{SUMARRY AND CONCIUSICNS}

Based on the results of the plate loaded FFA model's solutions, it appears that the new "y" shaped support design ehould function acceptably, from a strength standpoint alone. The new suqport's maximum Maximum Principal stress is appocorimately \(18.3 \%\) higher than the old support's. This is well below the yield stress for the surface unit support's material, which is 55 ksi . Additionally, the maximm stresses calculated by these models are concentrated at the steps in the ends of the supports and at the point contacts between the load plates and the supports. Therefore, if the steps had been rounded, and if the contact areas between the plates and eupports were increased, the maximum stresses would be even lower.

Also, the maximum vertical displacement of the new support was calculated to be \(0.015^{\prime \prime}\), and the samples tested (see Chapter XIV) did not yield until they had been displaced at least 0.045". Therefore, the new support's should not have a strength problem.

There are other things that GEA should consider in deciding if the new design should be used. For one thing, simple beam equations were used to calculate the deflections of the new expport design, using standard mechanics of materials theories. This yielded maximm deflec-
tion of \(0.009^{\prime \prime}\) when subjected to a fifteen pound central load. But, under the same load, the shell FFA model deflected 0.050" (see Chapter XIII) ; and the sample supports deflected 0.045" (see Chapter XIV).

In order to investigate these differences, the nodes in the FEA model alang the line between the top and bottan tangent points of the support pieces' center bends (where the overlapping materials first make contact) were menged to simulate more camplete welding of the two pieces of the new support. This variation of the new support design's shell FEA model was then solved under the same central fifteen pound vertical load. The resulting maximum deflection was \(0.0095^{\prime \prime}\). This indicates that the quality of the welds is very important. If the pieces of the new surface unit support could be welded together completely in the overlapping area, the eupport's maximm deflection could be reduced by a factor of five.

Another thing that GFA should consider is that the new design will have a different dynamic response than the old design. This may effect the sounds produced when surface units are escited by vibrations or impact. Therefore, due to the effects that "noisy" or "cheep sounding" surface units have on customers, GFA might want to extend this work to include modal analyses.

\section*{APPENDIX I}

I-DEAS qUICK REGFRENCES
\begin{tabular}{|c|c|c|c|}
\hline KEY & Cay \({ }^{\text {a }}\) ND & Yewponc & COYYRND'S RESUTTS \\
\hline <F1> & AUIOSCALE & AJ & SCALES ENIITIES TO FIIL VIENPCRT \\
\hline <F2> & DRAW & DR & dISPLAYS DRAWING W/ CURRENT VIEN \\
\hline <F3> & GLOBAL_DISPLAY & G & DISPLAYS DRAWING W/ GLOBAL DISPLAY \\
\hline <F4> & ZOOM & TM & USER PICKS DIAGONALS FOR ZOOM IN \\
\hline <F5> & MAGNIFY 141.4\% & MG 1.414 & SCALES VIEN UP BY 41.4\% \\
\hline <F6> & MAGNIFY 70.7\% & MG 0.707 & SCALES VIEN DOWN BY 29.3\% \\
\hline <F7> & ROTATE_ABOUT SCREEN & RS & ROIAATE ENIITIES ABOUT SCREFNS AXES \\
\hline <F8> & REDISPLAY & PEDI & Erases and remraws w/ Currint vien \\
\hline \({ }^{\wedge} \mathrm{C}\) & <CONIROL & N/A & DEFRESS \({ }^{\text {a }}\) C TOGETHER WITH "KEY" \\
\hline \({ }^{\wedge} \mathrm{C} C\) & STOP DISPLAY & N/A & STOPS LTRANSMISSION OF GRAPFIICS \\
\hline \({ }^{\wedge} \mathrm{CO}\) & OUIPUT ON/OFF & N/A & TOGGLES OUPPUT ON \& OFF \\
\hline \({ }^{9} \mathrm{C} Q\) & RESTART DIALOG & N/A & RESIARTS SIOPPED TEXI TRANSNISSICN \\
\hline \({ }^{\text {a }} \mathrm{C}\) S & SIOP DIALOG & N/A & SIOPS (HOLDS) TEXT TRANSMISSION \\
\hline \({ }^{\wedge} \mathrm{C}\) T & SYSTEM SIATUS & N/A & DISPLAYS COMPUIER SYSIEY'S SIATUS \\
\hline \({ }^{\wedge} \mathrm{C}\) X & CANCEL INPUT & N/A & CANCETS INPUIS NOT RECEIVED BY CPU \\
\hline \({ }^{\wedge} \mathrm{C}\) Y & BREAK OUT & N/A & LAST RESORT EREAK OUT OF I-DEAS \\
\hline
\end{tabular}

ANSYS QUICK REFERENCES
\begin{tabular}{|c|c|c|}
\hline COYMAND & SOUITNE & COVMAND'S RESUTIS \\
\hline AFWRITE & PREPP7 & ANALYSIS FILE WRITE \& DAIA CHECK \\
\hline /B & ALI & DISPLAX GRAPFICS \& TEXI TOGEEIHER \\
\hline DOCU & AIL & ON-LINE DOCUMENIATION ON MODUEE \\
\hline DOCU, ALI & ALI & ON-LINE DOCU' ON MODUE W/ FORMATS \\
\hline DOCU, /CSSD & ALI & MODUE'S "/" COMMANDS ON-LTNE DOCU \\
\hline DOCU, NAME & ALL & ON-ITNE DOCU' ON COMPAND NAMED \\
\hline DOCU,GRPH & FREPP7 & LIST OF GRAPHICS CONIROL COMPANDS \\
\hline /BOF & ALS & EXIT ROUITNE WIIHOUT SAVING WCRE \\
\hline FINI & AIL & FINISH ROUITNE AND SAVE WORK \\
\hline /G & ALI & GRAPFIICS ONLY (DIALOG OFF) \\
\hline /INPUT, FILE, EXXI & AII & READ NAMIED INPUT FILE (FILE.EXI) \\
\hline /INT & BEGIN & SEHS ANSYS FOR INTERACIIVE USE \\
\hline MODU & ALI & IISIING OF MODULES IN ROUITINE \\
\hline /OUIPUT,FILE, EXT & ALL & WRITE OUIPUT TO FILE (FIIE.EXI) \\
\hline /POST11 & BEGTN & PLACES USER IN POSTI MODULE \\
\hline /PREP7 & BEETIN & PLACES USER IN PRERP MODULE \\
\hline PROC & PREPP7 & PREPRPOCESSING, STEP-BY-SIEP \\
\hline PROC, \({ }^{\text {F }}\) & PREPP7 & INFO' ON SIEP \# IN PROCIEDURE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{COYMAND ROUITINE} & COYYAND'S RESUTIS \\
\hline SAVE & ATL & & SAVE CURRENT WCRK FOR RESUME \\
\hline SIAT & ALI & & DISPLAYS STATUS OF CURRENT MODUE \\
\hline /T & ALI & & display full screke texi (dialog) \\
\hline \multicolumn{4}{|c|}{ANSYS CONIPOL COMANDS} \\
\hline KEY & OPYMAND & ROUITNE & COYYAND'S RESUUTS \\
\hline <F1> & RECALL LAST COMMAND & ALI & RECALIS LAST COMMAND FOR REUSE \\
\hline \({ }^{\wedge} \mathrm{C}\) & <CONIROL> & ALI & DEPRESS \({ }^{\text {c }}\) C TOGELHER WITH "KEY" \\
\hline \({ }^{\wedge} \mathrm{CO}\) & OUIPUT ON/OFF & ALI & TOGGIES OUIPUT ON \& OFF \\
\hline \({ }^{\wedge} \mathrm{C} P\) & SIOP DISPLAY & ALI & SIOPS TRANSMISSION OF GRAPHICS \\
\hline \({ }^{\wedge} \mathrm{C} Q\) & RESITART DIAIOG & ALI & RESIARIS SIIPPPED TEXI TRANSMLSSION \\
\hline \({ }^{\wedge} \mathrm{C}\) S & STOP DIALOG & ALI & STOPS (HOLDS) TEXT TRANSULSSION \\
\hline \({ }^{\wedge} \mathrm{C}\) T & SYSTEM SIPATUS & ALJ & DISPLAYS COMPUTER SYSIEX'S STAIUS \\
\hline \({ }^{\wedge} \mathrm{C} \mathrm{X}\) & CANCEL INPUT & ALI & CANCETS INPUIS NOT RECEIVED BY CPU \\
\hline \({ }^{\wedge} \mathrm{C} \mathrm{Y}\) & BREAK OUT & ALI & LAST RESORT BREAK OUI OF I-DEAS \\
\hline
\end{tabular}

\section*{APPENDIX III}

UNIVERSAL FIIES

In addition to the providing use of IGES formatted files for the transfer of data into and out of I-DEAS, I-DEAS also provides its own transfer file format, call Universal Files. These files are used for the transfer of data from one I-DEAS family to another. For example, from Solid Modeling to Drafting, or from Solid Modeling to Engineering Analysis. Universal files can also be used to: transfer entities from one I-DEAS model file to another; archive camplete model file data bases; or to store individual solid models for use in other model files. Universal files are upwardly compatible with higher revisions in I-DEAS software than just the revision used to created the entities (e.g., I-DEAS 4.1 Universal files can be read into I-DEAS V). This make Universal files ideal for creating permanent files for archiving model files, or for creating parts libraries of solid models, etc.

The dimensional data stored in I-DEAS model files is always stored in SI units. If the user specifies another unit system (e.g., IN), the entities' units are converted to the specified units system for display, calculations, etc. In orcier to maintain the highest accuracy of the
data involved, before universal files are written out, the active unit system should be set to SI. This will prevent the data from being converted from SI to another system for storage in the Universal file.

Universal files are more "compact" in size than model files. one Universal file can contain all of the original (i.e., non-standard) entities fram one Family of data within a model file (i.e., moder.FIIE..MF1 and MODEL-FIIE.MF2 for Solid Modeling or Engineering Analysis), and its size will be less than the total of the model files. This is partially cure to the fact that the Universal files written out of a model file will not contained any of the entities that have been saved in I-DEAS "safety nets". That is, "OLD" entities that have been saved in the model files, due to their possible destruction or loss while that entity type's OU_SIACX_LENGIH in set greater than zero, will not be written into a Universal file. As introduced in Chapter II, it is this "compact" quality of the Universal files which the author has used "to 'deflate' the size of the [mociel] files, to the minimm size needed".

When the size of the data base for this thesis got too large, it caused problems, including lack of free disk space and long time periods required to retrieve and store the model files. Thus, by: 1) deleting all unneeded entities from the existing model files; 2) writing out a Universal file containing all of the entities in Solid Modeling; 3) reading the Universal file into a new (empty) model file data base; and 4) deleting the original model files, the model files could be compressed to the minimm size possible.

Universal files can be used to read and write entities into and out of a model file with use of the MANAGE, READ/KRITE, UNIVERSAL ccumands located in any of I-DEAS Solid Mocieling's Tasks.

The WRIIE UNIVERSAL file command will prongt the user for a Universal File name, and then for confirmation that a new file is to be written, or that an existing file is to be over written. The program will then ask the user to select which entities are to be written, from those used in the active program Family. In Solid Modeling these choices include: ALL, ALL_OBJDCP_MCDEKTING, ALL_SYSTEM_ASSEYBLY, VIENS_3D, DISPLAY_OPIIONS, LAYOUIS, LTGGII_SOURCES, COLORS, WORKING_SEIS, PROFILES, SKIN_GROUPS, OBJECIS, COYPCNENIS, and SYSIEYS. If the user selects any other than "ALL", the user will be further prompted for selection of the specific entities to be written.

The author wrote out Universal files containing ALL entities from Solid modeling, and then read thean into new model files, several times daring the completion of this thesis. This allowed the data base's size to be coupressed. But, once Engineering Analysis was used, the ability to compress the model files in this way became less successful. When the data from two different I-DEAS Families (e.g., Solid Modeling and Engineering Analysis) were written out to separate Universal files, and then read into a common data base, some entities were duplicated (e.g., WORKING_SEls). This did not always yield a net reduction in disk space required to store the model files.

\section*{APPETDIX IV \\ ANSYS INIERACIIVE COMAND FIIE}

The following is a listing of the command file used to call up ANSYS for interactive use for this project (see Chapter XI):

\section*{}
```

\$!*** ANSYS_INIER.CON ***

```
\$!*** DESCRIPIION.... ANSYS INIERACITVE CONAND FIIE ***
\$!*** PURPOSE. DEFTNES LOGICAL NAMES FOR ANSYS IEVEL 4.3A, ***
\$1*** ACCESSES THE PROGRAM FOR INIERACIIVE USE ***
\$!*** AND DEFEHES UNEMDDED FTLES ***
\$!*** CREATED BY..... DR. MIEE DAY, LNIVERSIIY OF LOUISVITE, 1988 ***
\$!*** DESCRIPITON OF FROMPIS ***\$! 1. ENTER MODEM NAME:
\$! Files will be specified as MoDEL NAME. Fnn, where m is the file
\$! namber (from 02 to 40).
\$! 2. ENIER /INT TO BEGIN FINNING ANSYS
\$! The ANSYS program needs to know that it is to be ran
\$! interactively. Bither /INI or /INI,NO (the NO stands
\$! for no beginning claimer) is appopniate.

\section*{\$! 3. DETEHE ALI FIIES EXCEPT 12-POST \& 16-FREP: Y/N/P? (Y)}
\$! Only FIWE12 (Results for Post-Processing) and FILE16 (Mociel Data
\$! for Pre-procesging) normally need to be saved. Entering \(Y\) will
\$! delete all files NODEL NAME.F*, excluding \(12 \& 16\); entering \(N\) \$! will reault in all files being saved. Entering \(P\) will prompt
\$! for files to delete.

\$!*** IRIIILATIZE ***
\$ SEI NOON
\$ CN CONIPNL Y THEN GOIO FINISH
\(\$ \operatorname{ESC}[0,7]=9 \mathrm{D} 27\)
\(\$ \quad \operatorname{PAGE}[0,7]=\$ 012\)
\$ WRITE SYS\$OUIFUT ESC+M\&10"+ESC+"IR" 1 CLBARS SCREER

\$!*** ASSIGN LOGICAL NANES TO FILES FRCM ANSYS DISK ***
\$ ASSIGN/NOLOG ANSYS\$DISK: [ANSYS4.3A]ANS IDENT.DAT ANS IDDNT
\$ ASSIEN/HOLOG ANSYS\$DISK: [ANSYS4.3A]DIDOCN.43A ANS DIDOCU43A

\$!*** ASSIGN MODEL NAME TO FILES ***

\$ WRITE SYS\$OUIPUT \#*** ANSYS 4.3A: INIERACITVE MODE ***

\$ WRILE SYS\$OUIPOT \({ }^{\text {nn }}\)
\$ MODEL:
\$ INOUIRE NAME \({ }^{H \rightarrow} \rightarrow\) ENIER MODEH NAME"
\$ IF NAME .EQS. 111 THEN GOIO MODEL
\$ \(\quad I=2\)
\$ ASSIEN IOOP:
\(\$\) IF I .ITP. 10 THEN ASSIEN/USER MODE/NOLOG 'NAME'.FO'I' FITEO'I'
\$ IF I .GE. 10 THEN ASSIGN/USER MODE/NOTOG 'NANE'.F'I' FIEE'I'
\$ SKIP ASSICN:
\(\$ \quad I=I+1\)
\$ IF I .GI. 40 THIEN GOIO RUN ANSYS
\$ GOIO ASSIEN_LOOP

\$!*れ* RUN ANSYS ***
\$ RCN_ANSYS:
\$ WRIIE SYS\$OUIPUT NH
\(\$ \quad\) WRIIE SYS\$OUIPUT \(" \longrightarrow\) ENIER /INT TO BEGIN RERNING ANSYS"
\$ DEFINE/USER YODE SYS\$INFUT SYS\$COMNAND
\$ RUN ANSYS\$DISK: [ANSYS4.3A]ANSYSA3A.EXE

\$!*** DETEHE SETFCIVD FITBS ***
S DIRECICRY/SIRE 'NRLE'.F*
\$ WRITE SYS\$OUIFUT NH

\$ IF CK .EgS. HM THIDN OK = "Y"
\$ IF OK THEN GOIO DETEHE FITES
\$ IF OK .ENS. "PN THEN GOIO DEXENE FROMPT
\$ GOIO FINISH
\$ DELENEFILES:
\$ DETEIE 'NAE'.F*;*/EXCLIDE=(*.F12,*.F16)
\$ GOIO FINISH
\$ DETHHE FRCNPT:
\$ DELEHE/CONFIPM 'NAME'.F*;*

\$!*** EXIT ***
\$ FINISH:
\$ KRITE SYS\$OUTPUT ESC+"LZ" ! CLEAR SCREFTN
\$ WRITE SXS\$OUIPUT ESC+PACE ! CLEAR GRAPFITCS
\$ WIRTEE SYSSOUIPUT "*
\$ WRIIE SYSSOUIPUT "**"
\$ WRTIE SYS\$OUIPUT "*** END OF ANSYS 4.3A: INIERACTIVE MODE ***"
\$ WRIIE SYS\$OUIPUT "**"
\$ WRIIE SYS\$OUIFUT ESC+"\&!1" ! ODDE ANSI
\$ EXIT

\section*{APPENDIX V \\ ANSYS BATCH COMAND FIIE}

The following is a listing of the command file used to call up ANSYS for batch use for this project (see Chapter XI):

\section*{}
\$1*** ANSYS BATCH.OMM *れ
\$! tht DESCRIPTHON. . . ANSYS BATCH OONRMD FITE **
\$!*** PURPOSE......... DEFINES LOGICAL NAMES FOR ANSYS LEVEL 4.3A, ***
\$!*** CREATES BATCH COMMAND FIIE, AND SUEMIIS ***
\$!*** JOB TO BATCH QUEUE ***
\$!*** CREATED BY..... DR. MIRE DAY, UNIVERSITY OF LOUISVIILE, 1988 ***

\$!*** DESCRIPIICN OF PRCMPIS ***
\$! 1. ENTER MCDEX_NHE:
\$! Files will be specified as MODEL_NAME.Fnn, where mn is the file\$! namber (fram 02 to 40). The file MODES NAME.DAT will be used as\$! input for the ANSYS run. If MODEM NAME.DAT does not exist, it\$! is assumed that MODEX_NAME. F27 has already been created, and a
\$!
MODEL_NME.DAT file is written (/INPUT, 27 FINISH /DOF).
\$! 2. SETDCT NODE: 2/3/4/5/6 (3)
\$! Use Node 3 if it is not too crowded. It is a VAX 8700 and is
\$! about 2x faster than nodes 5 and 6 (VAX 3100's).
\$! 3. SYS<5MIN SHORT<15MIN MEDIUKK1HR LONG>1HR
\$! SETECT BATCH QUEJE: SYS/SHORT/MIEDIUM/LONG (SYS)
\$! These time limits are for Node 3; the limits for nodes 5 and 6

SEP NOCN
\$ ON CONIROL Y THEN GOIO FINISH
\$ WRIIE SXS\$OUIPUT ESC+"\%! \(0^{\prime \prime+E S C+" I Z "+E S C+" \%!1 " 1}\) ! CLEARS SCREKSN
\$!*** ASSICN MODET NANE FOR INPUT FIIES ***

\$ WRITE SYS\$OUIFUP "*** ANSYS 4.3A: BATCH MODE ***"
\$ WRIIE SYSSOUIPUP "******************************"
\$ WRITE SYS\$OUTPUT \({ }^{\text {m }}\)
S MODET:
\$ NAME = P1

\$ IF NPNE .EQS. "III THEN GOIO MODEL

\$ IF F\$SEARCH (NAME+".DAT" \()\).NES. "H THEN GONO GEI NODE
\$ WRITE SYS\$CUIFUT " *** "NANE'.DAN MAS CREATED
\$ OPEN/WRITE MODEXIAT 'NAME'.DAT
\$ WRIIE MODEIDAT "C*** SIANDAFD INPUT FIIE FOR BATCH ***"
\$ WRITE MODFDDAT "/INPUT,27"
\$ WRITE MODEIDAT "FINISH"
\$ WRITE MODETDAT "/ DOF*
\$ CIOSE MODETDAT

\$l*** SETDCT NODE TO RLE BATCH JOB ***
\$ GET NODE:
\(\$ \quad \mathrm{NODE}=\mathrm{P} 2\)
\$ IF NODE .NES. NH TYIEN GONO SEI MODE
\$ WRIIE SYS\$OUNFUT Hin
\$ SHON QUEUE/ALL AP35V3*BATCH
\$ WRITE SYS\$OUNPUT MH
\(\$ \quad\) INOUIRE NODE \(" \rightarrow\) SETDCT NODE: \(1 / 2 / 3 / 4 / 5\) (3)"
```

\$ IF NODE .EDS. "M THEN NCDE = "3'
\$ SET_NODE:
\$ QUE = "QUEJF-AP35V"+NODE

```

```

\$!*** SEMECT qUEXE TO FLN BATCH JOB ***
\$ GEN_QUE:
\$ Q = P3
\$ IF Q .NES. "M THEN GOIO SEHPQUE
\$ WRITE SXS\$OUIPUT "'
\$ WRITE SYS\$OUMPUT "SYS<5MIN SHCRT<1SMIN MEDIUM<1HR LONG>1HR"
\$ INQUIRE Q "\longrightarrow SETECT BATCH QUEUE: SYS/SHORT/MEDIUM/LONG (SYS)"
\$ IF Q .ERS. "" THEN Q = "SYS"
\$ SET_QUE:
\$ QUE = QUE+" -"+Q+"\$BATCH"

```

```

\$!*** SELDCT TINIE TO RUN BATCH JOB ***
\$ GEI_TINE:
\$ WRIHE SYS\$OUIPUT "!
\$ MHEN = P4
\$ IF WIIEN .NES. N" THIN GONO SEI_TIME
\$ INQUIRE WHEN "\longrightarrow ENIER TINE TO RUN JOB: NOW/TONIGHT (NOW)"
\$ SEI_TIME:
\$ IF WHIEN THEN TINE = "AFTER-IOMORROW"
\$ IF .NOT. WHEN THEN TINE = "AFTER=TODAY"

```

```

\$!*** CHECX FOR DEXIGION OF FILES ***
\$ WRITE SYS\$OUIPUT \#"

```

DEL \(=\) P5
\$ IF DEL .NES. "" THRN GOIO CREATE_OM
\$ IMQUIRE DEL "DEXEIE ALL FIIES EXCEPPT 12-POST, 16-PREP \& 19-ERRORS: (Y)/N?"
\$ IF DEL .EQS. "N THEN DEL = "Y"

\$1*** CREATIE BATCH COMAND FIIE ***
\$ CREATE_COM:
\$ DEFDIR = FSENVIROMENT("DEFAUIIT")
\$ OPEN/WRITE OCM 'NAME'.COM
\$ WRITE COM "\$ SET NOVERTFY"
\$ WRITE COM "\$ SHON TTDE"
\$ WRITE COM "\$ SET MOON"
\$ WRITE COM "\$ SEM MESSAGE/HOFACILITY/NOIDENIIFICAITION/NOSEVERITY"
\$ WRITE COM "\$ ASSIGN/NOLOG ANSYSSDISK: [ANSYS4.3A]ANS_IDENT.DAT ANS_IDENTH
\$ WRITE OM "\$ ASSIGN/NOLOG ANSYS\$DISK: [ANSYS4.3A]DIDOCU.43A ANS DIDOCU43A"
\$ WRITE COM "\$ SET DEFAUUT "DEFDIR"
\$ WRITE COM "\$ ASSIGN/USER HDDE "NAME'.DAT FORO05"
\$ WRIIE COM "\$ ASSIGN/USER MDDE "'NAME'.IIS FOROO6"
\$ \(\quad I=2\)
\$ ASSICN_LOOP:
\$ IF I.LT. 10 THEN WRITE COM "\$ ASSIGN/NOLOG ' \(N\) NAME'.FO'I' FITEO' \({ }^{\prime \prime \prime}\)
\$ IF I.GE. 10 THIEN WRITE COM "\$ ASSIGN/HOLOG 'INAME'.F'II' FILE'I'"
\(\$ \quad I=I+1\)
\$ IF I.IE. 40 THEN GOIO ASSIEN_IOOP
\$ ASSIGN SCPATCH:
\$ IF .NOT. DEL THEN GOID RIN ANSYS
\$ WRITE COM "\$ DEASSICN FITE02"
\$ WRIIE COM "\$ DEASSICN FILE03"
\$ WRIIE COM "\$ DEASSICN FITEI1"
\(\$\) WRIIE COM M\$ DFASSIGN FITE30"
\$ KRITE COM "\$ ASSIEN SYS\$SCRATCH:FITF02' \({ }^{\prime} \mathrm{PID}^{\prime \prime}\) 'USER'.DAT FILEO2"
\$ WRIIE COM "\$ ASSIEN SYS\$SCRAMCH:FILE03'/PID' '/USER' .DAT FHLD03"
\$ WRITE CAM "\$ ASSICN SYS\$SCRATCH:FIIF11"'PID"'USER'.DAT FIIG11"
\$ WRITE COM "\$ ASSIGN SYS\$SCRATCH:FITE30' \({ }^{\prime}\) PID' \(/\) USER' .DAT FILE30"
\$ RIN ANSYS:
\$ WRITE COM "\$ FUN ANSYS\$DISK: [ANSYS4.3A]ANSYS43A. EXE"
\$ WRIME COM "\$ TYPE FILE19"
\$! ********
\$!*** DELEME SEIDCIED FILES ***
\$ IF .NOT. DEL THIEN GOIO SUEMIT JOB

\$ WRITE COM "\$ DETEHE/LOG "'NANE'.F*;*/EXCCUDEz(*.F12,*.F16,*.F19)"

\section*{}
\$!*** SUEMIT ANSYS JOB TO BATCH ***
\$ SUBMIT JOB:
\$ CLOSE COM
\$ LOGFILE = DEFDIRHNME+". LOG"
\$ LOG = MNOPRTNIER/LOG FTME='LOGFILE'"
\$ SUBYIT/MOITFY/'TPYE/ /'LOG'/'QUE' 'NAME'.OOM

\section*{\$!*** EXITI ***}
\$ FINISH:
\$ FRITE SYS\$OULPUT HU

\$ WRITE SYSSOUTPUF "*** END OF ANSYS 4.3A: BATCH MODE ****

\$ IF FSIOGICAL("MODETDAT49).NES. WH THEN CLOSE MODETDAT
\$ IF F\$LOGICAL ("OOM") .NES. WH THIEN CLOSE COM
\$ EXIT

\section*{APPENDIX VI}

\section*{PLANE LOAD SIRESS RESUITS}

SLRC I-DEAS 4.1: Pre/Post Processing 4-JUT-91 02:32:56 OID SUPT W/ GAPPED PLATE LOAD - J.A.KERN
\begin{tabular}{lll}
Group ID & : SUPPORT'S NODES \& ETSNENAS & \\
Analysis Dataset & \(: 7\) - LOAD 1, SIRESS7 & \\
Report Type & : Contour & Units \\
Dataset Type & : Stress & Load Set \\
Frame of Reference: Global & Data Component: Max Prin \\
Surface Type & : Middle &
\end{tabular}
\begin{tabular}{lrrrrr}
& Max Prin & Mid Prin & Min Prin & Max Shear & Van Mises \\
& 730 & 253 & 48 & 50 & 50 \\
Maximum & \(3.848 \mathrm{E}+03\) & \(2.353 \mathrm{E}+01\) & \(1.042 \mathrm{E}+03\) & \(4.406 \mathrm{E}+03\) & \(8.076 \mathrm{E}+03\) \\
& 713 & 210 & 50 & 1 & 1 \\
Minimum & \(-2.596 \mathrm{E}+03\) & \(-2.368 \mathrm{E}+01\) & \(-7.049 \mathrm{E}+03\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) \\
& & & & & \\
Average & \(1.641 \mathrm{E}+02\) & \(1.818 \mathrm{E}-03\) & \(-1.700 \mathrm{E}+02\) & \(1.670 \mathrm{E}+02\) & \(3.315 \mathrm{E}+02\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline SDRC I-DEAS 4.1: & Pre/Post Processing & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{4-JUT-91}} & 01:22:10 \\
\hline \multicolumn{3}{|l|}{NEN SUPT W/ GAPPED PLATE LOAD - J.A.KERN} & & \\
\hline Group ID & : SUPPORT'S ET-PMENTS & & & \\
\hline \multicolumn{5}{|l|}{Analysis Dataset : 7-10AD 1, SIRESS7} \\
\hline Report Type & : Oontour & Units & : & IN \\
\hline Dataset Type & : Stress & Load Set & \% & 1 \\
\hline \multicolumn{2}{|l|}{Frame of Reference: Global} & \multicolumn{3}{|l|}{Data Component: Mid Prin} \\
\hline Surface Type & : Midale & & & \\
\hline
\end{tabular}

Max Prin Mid Prin Min Prin Kax Shear Von Mises
\begin{tabular}{lllll}
411 & 230 & 6 & 23 & 23
\end{tabular}
\begin{tabular}{rrrrrr}
Maximum & \(3.976 \mathrm{E}+03\) & \(1.298 \mathrm{E}+02\) & \(1.149 \mathrm{E}+03\) & \(4.445 \mathrm{E}+03\) & \(8.147 \mathrm{E}+03\) \\
& 35 & 347 & 23 & 15 & 15
\end{tabular}

Minimum \(-3.022 \mathrm{E}+03-3.446 \mathrm{E}+02-7.110 \mathrm{E}+03 \quad 9.754 \mathrm{E}-01 \quad 5.028 \mathrm{E}+00\)

Average \(6.663 \mathrm{E}+02-1.044 \mathrm{E}+00-6.927 \mathrm{E}+02 \quad 6.795 \mathrm{E}+02 \quad 1.357 \mathrm{E}+03\)

\section*{APPENDIX VII}

\section*{GENERAL ACCESS TO AND USE OF I-DEAS}

\section*{ENTERTNG I-DEAS}

At GEA, I-DEAS is available on various VAXs and workstations in the VAX Cluster. To access I-DEAS, the user must first log onto an appropriate VAX. I-DEAS may not be installed on all VAXs, and some installations of the software may not contain all of the I-DEAS Families (e.g., DRAFITNG) . Entering:

> WHEREIS IDEAS <RBIURN>,
at the VAX system prompt will display a listing of the VAXs on which I-DEAS is available. This will not show which I-DEAS Families are present. That mast be learned through use, or by consulting with the VAX systems' I-DEAS software support personnel.

Once logged anto the appropriate VAX entering: IDEAS <REHURND,
at the VAX system prampt will call up the program.

\section*{I-DFAS VERSIGN}

When multiple versions of the I-DEAS program are available on the GEA VAX computer network, the finst prompt the user must respond to is to specif \(y\) which version of the software is desired. This is usually requested with a prowpting question that list the versions that are available (e.g., 4.1, 5.0, etc.). One of the versions is usually a default for this question, and can be selected by entering a <Return>.

TEFRYINAL TXRE
The user must specify the terminal type that is to be used. It is assumed that anyone using this text as a handbook has access to an appropriate graphics terminal (at GEA, either a Tektronix, Calma, Lexidata, or DEC terminal or workstation, or a personal computer with EYIJ-IEX) for use with I-DEAS and ANSYS, and is familiar with its setup and use. Discoussion of this type of information is outside the scope of this work. Some comments appear in this text on the use of various types of Tektronix terminals, because of that hardware's available to GEA's engineers and the author's familiarity with it. Other equipment may work equally well.

The terminal type entered is a code that usually reppresents the physical terminal being used. If a \(\langle R E I U R A>\) is entered without a code, a listing of available codes will be displayed. Or, if a partial code is entered, a listing of codes for that family of terminals will result. This allows the user to select the appropriate code for the terminal and mouse or tablet being used.

At GEA, the user will likely be using a Tektronix, Calma, or Lexidata terminal with one of the following codes: T4105, T4107, T4205,

T4207, T4129, or one of these will an A or B suffix for a tablet or mouse; CDSBOX; or ISVDNA, respectively. When a Tektronix terminal is used, several lower level models' codes may be used in place of a higher level unit's terminals code. For escample, the codes T4105 or T4107 can be used on a Tektronix 4207 or 4129 terminals, which have a tablet cr mouse attached. This effects the type of merus and mouse or tablet pickable codes that will appear on the graphics display.

DRAFITING is the only I-DEAS Family which requires the use of a mouse or tablet (even though the Tektronix terminal may have a joy pad, that works in all other I-DEAS Fomilies). But, if other I-DEAS program Families will be used before entering DRAFITING, a non-mouse code can be used, and the user will be prampted to change the code when entering DRAFITNG. Therefore, if Solid Modeling is to be use first, T4107 might be used, and then ewitched to T4207A when entering DRAFITIG. Experience has shown that using the codes which allow mouse or tablet "picking" of mema entries from the screen can make the system response time slower in same installation (e.g., at low baud rates, or when using emulators) than if I-DEAS is only looking for keyboard entries. Also, screen picking of manu selection is more tedious than keyboard entries of the memus' memonic codes, and is seldam used. The picking of graphic items will still function as required, and can be done with the joy pad, cursor keys, or mouse depending upan the device or emulator being used.

If a personal computer (PC) is being used with EMD-TEX Tektronix terminal emulation, this switching of codes may greatly effect the response time. Tektronix terminals operate with two different processors at the same time. One controls the scrolling "dialog" (text), and the other controls the graphics display. EMJ-TEX works similarly, using
the PC's main processor and it graphics controller. The user can switch the text on alone (<Alt>L), and the PC's (higher speed) processor will control the display speed. But, when the graphics are displayed (\(\langle\) Al \(t>F\)), the text and graphics are controlled by the graphics card, which generally has a slowar display speed. Thus, the user can speed up the response time by toggling between these "Limited" and "Fine" display modes. But, if the T4207A code is used, and I-DEAS is constantly looking for screen picks from a mouse, only the (slower) Fine display mode can be used. Whereas, unless DRAFITMG is being used, the T4107 code will allow the user to toggle between Fine and Limited display modes. In any case, when EyD-TEX is used, toggling between these two display modes, and turning the dialog on and off (<Alt>D) will effect the system's speed and its display colors (again due to the common use of the graphics controller). Experimentation with these options will inprove user's productive use of this emulator.

\section*{MODET FIIE}

The next I-DEAS input required after the terminal type is the model file name. I-DEAS stores all of the model information in model files. These files are named NAME.MF1, NRME.MF2, etc., the number of files created depends on the version of I-DEAS being used. When proupted by I-DEAS, the user types in the single wond name for the data base files that are to be used. The file name can either be that of an existing set of files or a new name for which new files will be created. If the name entered is not found in the VAX subdirectory through which the user entered I-DEAS, I-DEAS will ask if it is OX to create a new file. This gives the user a chance to say no, and retype the desired name, or to
leave I-DEAS and move to the subdirectory containing the model filea desired.

During an I-DEAS session all changes will be made in "ecratch" files which I-DEAS creates when the system is entered. Initially, these are copies of the existing files, if an existing database is being used. These scratch files will have names like IDEASIXD1.NF1. The user should issue a SAVE command frequently during an I-DEAS session, to save any work that has been done. This copies the scratch file over the selected model files (or a new model file name if desired). By saving frequently, the user will prevent the accidental loss of any desired information and work done. This will also allow the user to experiment with commands which may result in undesired changes to the model and solids. If an undesired result occurs, and if the original entity does not remain in the stored information, the scratch file can be abandoned, and the permanent files can be reloaded with the NEW_FILE command.

Within I-DEAS, SIORE commands are used to store entities in the scratch model files. The stored items are not actually saved in the permanent model files until the sAVE command is used. It is very important for the user to use the SAVE command frequently when working in I-DEAS. This will prevent the loss of time and effort in the event that the I-DEAS session is out short by user or by system errocs.

I-DEAS can store entities, that have not been stored with a siore command, as OLD1, OID2, etc., before they are destroyed by the exsecution of an I-DEAS command. This allows the user to recover these "old" entities, even though they were not stored by the user. The number of old entities stored is determined by the "OLD_STACK_HEIGFI" specified by the user in the MODEL_FILE menu. The default height is one. Because of
the storage of "old" entities and other I-DEAS information in the scratch model files, scme undesired space is added to the permanent files when a SAVE is issued. Also, when items are intentionally deleted from the stored directories within I-DEAS, the size of the scratch (and in turn permanent) files will not be reduced. The result is that the permanent files will be larger than is actally necessary, or useful. This is only a problem if the model itiles become very large, which will easily cocur when a large data base is created, and when disk space becanes limited. It is a little like working inside of a balloon which stretches with each move. The only way that the author has found to "deflate" the size of the files, to the minimum size needed, involves the operations documented in Appendix III.

If a new model file is being created, I-DEAS will prompt the user for a description of the model file. This will appear at the top of the I-DEAS monitor screen, and on any prints made of the screen. This description can be changed from within I-DEAS by selecting the MODEX_FILE merm and then the DESCRIPIION command. The user will also be prompted to select the desired system of units to be used in the model file. This determines the units of length, force, area, tenperature, etc. For this thesis, the ERIIISH_GRAV_(MOD) (memonic, IN) units system was used. This can be change fram within I-DEAS' MODEI_FIEE mern.

\section*{OPERATTON YODE}

Following the salection or creation of a model file, I-DEAS prampts the user to select the operation mode. This is either NOPMPL_OPERAIICN Or PROGRAM_FILE_OPERAIIIN Mode. The PROGRAM_FILE mode will create a
program file containing all of the commands the user enters during the I-DEAS session. The NORMAL mode will execute all entered commands without creating a file. The program file is in ASCII format which can be edited. Each line of the file contains a string of I-DEAS command memonics that were entersed during the session. This file can be used to document the work done in I-DEAS. It can also be called up and run in a subsequent I-DEAS session by executing: MODEL_FILE, PROCRAM_FILE, FUN. If this is done, the previous session will be rerun on the graphic screen. This can be useful for presenting demonstrations of the I-DFAS system, or to present the model which has been created. It can also be used to reconstruct a session's work which may have been lost due to an incorrect exit from I-DEAS, such as: exiting without saving the results; a system "crash"; or being timed out due to inactivity. When this is done, the and of the file should be edited to remove any errocs that may have caused the crash or exit, and once the file is rum, the SAVE coumand should be used before continuing.

\section*{I-DEAS MENU SILRUCIURE}

I-DEAS is divided into logical sections. Each of these sections are intercomnected through their merus, which are built in a root like fashion. After the mode of operation is selected, the user enters the mern system at the top of this root. Then a "Family" of the system is selected, either Solid Moceling, Engineering Analysis, System Dynamics, Drafting, Numerical Control, or Test Data Analysis. The next level down the root system contains the Family's "Modules". The next level in the root system contains "Tasks". Each Task contains groups of related commands and options merus. Finally, each sub-merm in a task contains
commands, which in turn contain further sub-menus that are presented curring the execution of the commands.

Unlike the selection of Families and Mocules, a default Task is entered following the selection of a Module. If a single Module is specified at the Module selection level, its default Task will be entered. The user would need to input:
/IA <REHUPD,
if another Task is desired. This will yield a merm from which the desired TASK can be selected. If, the memonic is known for the desired Task, that TASK can be reached by typing:
/TA NAIPMONIC <REIURND,
or back at the Module selection,
MODUE-MNDYONIC TASK-MMEYONIC <REIURN,
can be entered to override the MODUE'S default task.
In I-DEAS, a "/" moves the user up to the top level in the active task's branch of the I-DEAS merns' root system. Entering a "l" moves the user up one level in the root system, or back one proupt when executing an I-DEAS command. These can also be used in a command string, like "/TA W", to start the desired command string at the top leval of the root system. Entering a "\$" in response to any proupt when executing an I-DEAS command will cancel that command.

\section*{GIOBAL MIENU AND VIPN_ MFYU OPTTONS}

I-DEAS assigns default values for each display command parameter. But, to obtain optimm views of any entity in I-DFAS (e.g., solids, profiles, working geometry, etc.), the commands in the VIVW meru and the view commands in the GIOBAL MENU (GM <REIURN>) should be understood.

The GLOBAL MENU contains a list of coumands that are available at any position within the I-DEAS maral structure. The coumands can be keyed in directly, or

GM <RHURND
can be entered to display the global mana. On scme terminals, the memonics for the global camands are also displayed along the right side of the display, and can be picked with the graphics cursor.

Several of the global display cammends are programmed into the terminal function keys by I-DEAS upon entering I-DEAS. These commands are shown in TABIE 5.

TABIE 5.
FUNCIION KEY VIENING COMMANDS
\begin{tabular}{|c|c|c|}
\hline KEY & M NPYCNTC & COYMAND \\
\hline F1 & AJ & Autoscale \\
\hline F2 & DR & Draw \\
\hline F3 & GD & Global_Display \\
\hline F4 & 2M & Zoam \\
\hline F5 & MG 1.414 & Magnify 141.4\% \\
\hline F6 & MG 0.707 & Magnify 70.7\% \\
\hline F7 & PS & Potate_About_Screen \\
\hline F8 & REDI & Redisplay \\
\hline
\end{tabular}

The AUIOSCALE Commands causes the display to be erased, and the active entities to be rectrawn using a magnification that will allow all of them to be displayed. This is most often used to back out of a zoomed in position, allowing the user to see the entire display.

The transmission of the graphical information to the screen can be stogped before it is completed by depressing <CONIROL> \(C\)
simultaneously. This can save a great deal of time spent waiting for the complete display of an undesired view (which is often obvious long before transmission is complete), especially if a low baud rate commications line is being used. All subsequent view conmands (e.g., zoom) will work exactly as if the display had not been interrupted.

The DRAN command causes the graphics to be erased, and the display to be drawn using the active view parameters (e.g., magnification, rotations, eye location, etc.). If no changes have been made to the view since the last redraw, only the banner information will be updated. If changes have to been made to the entities, but the view has not been changed, this command will work like a "refresh" operation. But, if the changes are not recognized by the terminal being used, and a refresh is desired (i.e., no view change is desired, but the screen needs to be updated), the use of the Redisplay coumand (key F8), or

MG 1 <REIURN\
will yield the desired results.
The GIOBAL DISPLAY command can be used anywhere in the I-DEAS menu structure to exscute any type of DISPLAY_OPIION (e.g., HIDDEN_LINE, SHADED_IMAGE, etc.) the user has SEP_AS_GOBAL in the DISPLAY_OPIIONS menu. This allows the more complex DISPLAY_OPIIONS to be setup and then
exsecuted at any time, as easily as the simple DRAN command. The use of these more camplex DISPIAY_OPIIONS are discussed in the chapter entitled SOITD MODEX DISPIAY.

The ZOOM command allows a selected area of the display to be enlarged for enhanced viewing, or to obtain clear shots at objects while exsecuting "picking" commands. Once the ZOOM command has been issued, the user is praupted to pick the two diagonal corners (i.e., upper-left and lower-right, or lower-left and upper-right) of the rectangular display area that is to fill the graphics screen.

The MACNIFY command is used to enlange or reduce the size of the view displayed around the center of the screen. The amount of enlargement or reduction is entered as a fraction of the existing screen size. For example, Mg 0.75 will reduce the displayed view by 75\%, resulting in a display of a larger amount of the total active entities. Or, MG 1.50 will enlarge the displayed view by 50\%, resulting in a display of a smaller amount of the total active entities. I-DEAS programs two preset magnifications into function keys F5 and F6, but the user can manually type in any magnification desired with the MAGNIFY cammand.

The ROIATEE ABOUI_SCREEN Command is used to rotate the view port about the graphics acreen's horizontal and vertical axes. This coumand is similar to the ROIATE ABOUT_MODEL command in the VIEN menu, except it uses the graphics screen's axes rather than the global 3D axes for the rotation of the view point.

REDISPLAY "refreshes" the graphics display. Thus, the view is not changed. But, the screen is erased and then redrawn.

Each task in I-DEAS' Solid Modeling and Engineering Analysis contain a VIEN meru which can be obtained by entering
/V <REIURN>.
The VIEN merm contains the commands listed in TABLE 6.

TABLE 6.
I-DEAS' VIEN OAMYANDS

NNPYDNTC \(\qquad\)
CE CFNTER
E EYE DIRECTION
P PERSPECTIVE
RM ROTATE_ABOUI_MODEL
SP SPECIAL_OPERATIONS
V VIEN_DIRECIION
10 LOCATE_TARGET_\&_EYE
RE RESET
IA LAYOUT
AF AFFECIED_VIENPORIS
CU CURRENT_VIEN
SIO STORE
MA MANAGE_VIENS
SIA STATUS

The CENIER command allows the user to select a point in the current view to be translated to the center of the display screen. The new
center point can either be picked fram the screen with the currsor; or it can be keyed in as a fraction of the screen, for which the lower left corner of the screen is 0,0 and the upper right is 1,1 .

By specifying an EYE DIRECIION, the user can key in a location (in the model's coordinates) from which to view the geometry when looking toward the center of the screen.

I-DEAS' can present 3D objects in such a way that they appear to have depth. The PERSPECIIVE command is used to turn this feature on and off. It is also used to custanize the appearance of the perspective view by setting the viewing DISIANCE away from the object in the active unit system, or the FIEID_OF_VIEN in degrees.

The ROIATE ABCOU MODEL comand is used to rotate the user's view point about the model axes.

SPECTAL_OPERAIIONS presents a sub-mena of view commands that are used less often. These allow the user to specify a view Angle, or a VIEN_DIAMEIER; to place a 3D point from the model space at the center of the screen; to Translate the geometry along the screen axes; and to apply THICNNESS and VOLINE_CIIPPING.

Fach of these commands are described in on-screen her \(P\), as are all the I-DEAS commands. HEIP can be get gotten by entering:
\[
/ H E<R E T U R N \text {, }
\]
and then selecting the kind of help that is desired, which includes descriptions of all commands in the CURRENT_NENU and in the GLOBAL MENU.

The VIEN_DIRECIION command can be used to define vectors for the line of site to the geometry, and the direction of vertical.

IOCAIE_TARGET_\& EYE is useful for selecting a point from which to view the geonetry and a target point to look at. This is done interac-
tively in 3D model space.
RESEP will replace any view parameters the user has modified with their original default values.

The LAYOUT coumand is used to control the screen format, which can ocntain multiple viewports. I-DFAS presents a menu of preset layouts containing from one to four viewports that can be selected, or the user can create custom layouts.

If multiple viewports are displayed, any subsequent command which effects the view may prompt the user to specify which viewports are to be effected. But, if the user desires all subsequent commands to effect selected viewports only, the AFFECIED_VIENPORIS camand can be used.

Once a view is created and modified to the user's satisfaction, the SIORE command can be used to store the view for later use with any active gecmetry. This future use of the stored view(s) is done with the CURRENT VIEN Command. The stored views and their names are managed with the commands in the menu call up with the MANAGE_VIENS command; and SIAIUS generates a list of the current values of the VIEN options.

\section*{VANAGE}

Nearly all tasks within the I-DEAS Solid Modeling program's moctules contain a MANAGE mernu, which can be reached by entering:
/NA <RETURN>.
These mernus contain commands used to manage the entities created and manipulated in the individual tasks. They allow the user to DETEFE, RENAVE, COPY, IIST, specify the OLD_SIACK_LENGIH, GEI, SIORE, and list DIRECIORIES of the entities created within each task. In addition, some tasks' NANAGE menus also provide means for CLFANing, and APPEDing the
data stored in the sets created. Others provide for the READing and WRITing of entities into and out of I-DEAS for use with external programs (e.g., ANSYS and Calma).

Solid models, and system assemblies can be stared in user specified "bins". This allows the user to separate the entities created into logical groups to aid in the management of their storage. The NANAEE memus in the appopriate tasks within these mochules provide BIN coumands used to DECTARE, DESEHE, and RENANE bins, and to identify a CURRENI (active) bin. Only those entities contained in the "current" bin can be retrieved. But, it is possible to make a bin current, get an object, and then make another bin current. This will allow the object to be stored in another bin, or to work with one object, along with objects from another bin.

\section*{DISPTAY OPTICNS AND DTSPR AY AITLRTEUTES}

In addition to the commands presented in the VIEN merns presented in each of the I-DEAS tasks, which effect the ways in which the various entities can be viewed, there are many different options available for the type of displays which can be viewed. These display options are obtained with the comands presented in the DISPLAY_OPIIONS and DISPLAY_AITRIBUIES menus . These display options are discussed in detail in Appendix \(\mathbf{X}\).

APPENDIX VIII
I-DEAS SOITD MODEL CREATION OPERATIONS

\section*{CREATY MFNU}

The CREATE menu contains the commands need to create both primitives and user defined solids. The primitives (blocks, cones, cylinders, spheres, and tubes) each have a command listed in this memu. These basic solids are not only useful as pieces with which to build larger solid models. They are also very useful as "tools" for cutting other solids. They can be used like drill bits, files, and dies, etc.

\section*{CRFATION OF PRTYIMYIVS}

The BLOCK comand proupts the user for the block's \(X, Y\), and \(Z\) dimensions, and its color. The resulting block will be centered at the origin of the global 3D epace.

The CONE command asks for the cone's bottom and top redil; its height and the number of facets used for its sides, whether it is ax to cap it with triangles, and for its color. The cone's axis will be along the global \(y\)-axis, with its bottom centered at the origin. If the top or bottom are capped with triangles, a center point will results, which may be useful in crienting or ehaping the cone.

The CYIMDER command prompts the user for the cylinder's radius, height, and namber of facets, if it should be capped with triangles, and for its color. The cylinder's axis will be the global Y-axis, and its center will be place at the global origin.

The SPHERE ccmmand asks for the sphere's radius, the rumber of facets about the 2-axis, the number of facats about the Y-axis, and for its color. The center of the aphere will be place at the global origin.

The TUBE cammand will prampt the user for the tube's imner and outer radil, its height and number of facets, and its color. Its axis will be the global Y-axis, and it will be centered about the origin.

In each of these cases, the ramber of facets specified will effect the way the object displayed only. Each object will also have a "precise definition" which will consist of planar and rational B-spline surfaces.

\section*{CREATION OF USER DEFTNIDD SOITIDS}

In addition to the commands used to create primitives, Object Modeling provides EXIRJDE, REVOLVE, SKRN, FILIET_TOOL e camands.

\section*{EXIRUDE}

The EXIRUDE command works like a cookie cutter. It uses any profile that has been previously created and draws it through space a specified distance perpendicular to the profile's plane, twisting as it goes if desired, to cutout an object.

The EXIRUDE command will first prampt the user for the profile to be used. Next it will ask for the extrusion distance. Then it will ask for the total twist angle, with a default of zero for a straight part.

If a non-zero twist angle is specified, it will ask for the point about which to pivot the profile. The default is the profile's centroid.

EXILRIDE will then ask for the edge generation option, which is either ABSOLUIE_DEVIATICN, Or PERCENT_OF_CHORD_LENGIH. These options control how coarse or fine I-DEAS will generate the approximate topology model which is displayed on the graphics screen using faceted planst surfaces. This does not effect the precise geometry which is created with rational B-epline surfaces. The number of facets are generated based on the degree of deviation between the true curves and the facets' linear ediges or chords. The default method used for faceting the model is the PERCENT_OF_CHORD_LENGIH option. The PERCBNT_OF_CHORD_IDNGIH method is independent of the object's scale. It uses a ratio between the maximum distance from a facet's edge to the true carve and the length of the facet's edge. This causes a larger number of facets to be created in areas of great detail, and less facets are created in areas of low detail. If this option is used to control the faceting, a maximm percentage deviation must be entered. The default value is eleven percent (11\%). This percentage will yield sixteen (16) facets around a cylinder, which is also the default for a cylinder created as a primitive.

The ABSOLUIE DEVIATICN option uses a fixed maximum distance (in the current units) from the faceted edges and the true curves. This method is recoumend when creating solids of long slender objects using the akiming technique.

In either case (percentege or absolute) higher maximm deviations yield fewer facets, and lower deviations yield more facets.

The last two inputs required for the EXIFIDE command are the number
of sections and the objects color. The number of sections selected will create duplicates of the profile. If the object is a straight solid, one section is all that is needed. If the profile is being rotated during the extrusion, I-DEAS will select a reasonable number of cuplicates for the default value.

Figure 53. displays an example of a 2D profile (shown with the "*" points) which was extruded to create a straight solid. The profile was extruded \(0.05^{\prime \prime}\), the thickness of the supports, without twisting. The solid has been translated away fram the profile for better illustration.

\section*{REVOLVE}

The REVOLVE command is used to create solids by revolving a 2D profile about the global \(Y\)-axis through a specified number of degrees of rotation. Because this operation works around the Y-axis, the profile may require orientation (in the PROFILE 2 D task) to place its axis of rotation on the \(Y\)-axis. The profile can not cross the Y-axis. But, it can be located away from the Y-axis, as was done to create each section of the heating units' heater sheath, as will be shown later in this chapter. A solid of revolution can be created by revolving a profile of half of the object about its axis of symmetry, lying on the Y-axis. For example, cylinders and cones could be created by rotating rectangles and triangles about the Y-axis.

The Revolve command will first prompt the user for the profile to be used, the default is the currently active profile. If the profile crosses the \(y\)-axis, the operation will be terminated with an error message stating that this is the case. Next Revolve will ask for the angle (in degrees) through which to rotate the profile about the \(Y\)-axis.

SDRC I-DEAS 4.1: Dbject Madeling database: mel surface unit support desigh - jeffrey a. kerm UIEU : SUPT ISO (modlfied) Tosk: PROFLLE

20-JAN-91 22:29:34
UMITS OISPLAY: Mo stored gition Horksel: 34-5THPE WHL Stuprort cooi

If an angle less that \(360^{\circ}\) is used, the program will cap the ends of the solids with planes bounded by duplicates of the 2D profile.

The next coptions that the REVOLVE comand presents are: translation alang the Y-axis; and change in radius. These can be used to create solids of such things as springs and machine threads. If either of these options is used, the changes are distributed linearly over the angle of revolution. If the profile is located away from the \(Y\)-axis, it can spiral inward, toward the axis, with the change in radius option. But, the profile can still not cross the y-axis. Thus, before the praupt for these options is presented, I-DEAS will display the "Minimum radius change". This value is usually a negative number, and represents the largest negative change in radius that can be used without crossing the \(Y\)-axis.

REVOLVE will then ask for the edge genaration option (ABSOLUTE_DEVIATION, Or PERCENT_OF_CHORD_LENEIH), which were discussed previously along with the EXIRUDE command.

The last two imputs required for the REVOLVE command are the number of sections to be created, and the object's color. The number selected will create duplicates of the profile at equal angular spacing through the revolution. The solid's faceted representation will be completed by cormecting each point around the duplicate profiles to those of the next with chords. The default is sixteen (16) sections per \(360^{\circ}\) of revolution, like a primitive cylinder.

Several solids were created for this thesis using the REvOLVE command, in combination with the EXIRUDE and JOIN Commands. Figure 54. shows one example of a part the was created using the REVOLVE command. It is a Center Trim that is designed to be mounted onto the center of

SDRC I-DEAS 4.1: Object Madeling DATARASE: MEU SURFACE UNIT SUPPDRT DESIGN - JEFFREY R. KERM UIEU : 4

FIGURE 54. - EXAMPLE OF A SOLID CREATED BY REVOLUTION
the new support by twisting the three tabs into holes in the legs of the sumport, and then bending them over. A bull's eye, or drop-in-a-bucket pattern is stamped into these parts for a replacement parts coupany supplied by GE. Although it was not analyzed physically or structurally, it did need to be designed, and served as good exercise in the use of a working set, profile, and solid revolution for the creation of a unique part.

Figure 55. displays the complete model that was created for the sheathed heating unit to which the old and new surface unit supports are to be attached. The unit's round sheath is formed into a six turn scroll shape, and then flattened into a flat top D shape. The shape is not actually a mathematical scroll, and is could not be created using the change in radius option within the REVOLVE command. Fach of the main semicircular arks and the two end arks of the unit have their own constant radii. Therefore, each of these segments were created with the command, and then oriented and JoINed to construct the complete unit. The joints of each segment can be seen were their faceted surfaces meet, primarily along the global YZ plane.

\section*{SKTN}

The SKIN command was not used in this thesis. But, it provides a very unique method for creating solids, and its use should be explored for any project requiring the creation of non-geometric solids. Basically, the akiming method of object creation involves creating multiple 2D profiles that are sections of the object taken from known distances along the object's main axis, and then using the I-DEAS program to create faceted surfaces over these sections to create the

SDRC I-DEAS 4.1: Object Madeling OATABASE: MEU SURFACE UMIT SUPPORT DESIGM - JEFFREY A. KERA UIEU Task: 08, 15

Dbiect: 5-COIL ast1 8:P.I.

FIGURE 55. - HEATING UNIT'S SOLID MODEL (REVOLUTIONS)
body. This works much like creating a model airplane with wooden ribs and tissue paper stretched over the frame. This technique has been used by others in the creation of solid models of bones that have been sectioned at measured distances and digitized to create the profiles, and of body organs that have been sectioned with CAT scan and MRI equipment.

\section*{FITIET TOOIS}

Object Modeling provides two ccumands for the creation of fillets: EDGE_FIITET_TOOL_6, and COFNER_FILLET TOOL_e. These commands, and all other I-DEAS commands that end with an "el", are not tracked in the objects' history file. As their names imply, the commands do not actually change the object for which the fillets are being created, but rather, they create "tools". These tools are separate solids, stored in the active object bin, which can then be cut from or added to other solids. When possible, it is more efficient to fillet objects when creating the objects' working sets of 2D profiles, especially in the case of rounded corners for straigint sided parts' edges.

The EDGE_FIIIETHOOL ef command is used to create tools for use in rounding off the outside edges, or for jointing the inside edges of two adjoining surfaces with a radius. The first itens required by the EDGE FIITEI_TOOL_e comand are the selection of the start and end points of the boundary between the two surfaces to be rounded off. Then the user is prompted to irput the radius of the fillet at the starting point, followed by the radius at the ending point. If desired, the radil at the two ends can be different, in which case I-DEAS will vary the fillet tool's radius linearly from the start to the end. The
dafault radius for the end point is the radius input for the start point. I-DEAS next asks for the length of the side of the fillet tool which will extend perpendicular to the fillet surface at the tangent line between the fillet and the object's arfface being filleted. Next the user is asked for the extension length for the first end of the fillet, followed by the extension of the second end. The extension of the ends of the fillet tool may be required to cut the full length of a solid which has material to be removed with the tool that lies beyond the ends of the fillet edge shared by the two surfaces to be filleted. The edge generation option, and its maximum deviation must be inqut, as were discussed along with the ExIRIDE command. The final input required for this command is the name desired for storing this solid (fillet tool).

Two examples where created to display the use of the EDGE_FIIIET_TOOL_e command. Figure 56. shows a one inch square block which has had one outside edge filleted. This figure displays the original block with the fillet tool in position on the block, and the resulting filleted object created by cutting the block with the fillet tool. In this example the fillet radius is constant (\(0.25^{\prime \prime}\)) along the entire fillet; the fillet extension is \(0.050^{\prime \prime}\); and the end extensions are zero. Figure 57. shows a straight sided object which has an inside edge that was filleted. As in the outside fillet example, the fillet radius is constant and no end extension were required to cut the straight sided object.

The CORNER FIITEF_TOOL_e command is used to create tools for use in rounding off the outside corner, or for joining together the inside corner of three adjoining equal sized curved faceted surfaces with a

SDRC I-DEAS 4.1: Object Modeling OATABASE: MEU SURFACE UMIT SUPPORT DESIGM - JEFFREY A, KERM UIEL : SUPT I50 (modified) Task: 08JECT

6-FEB-91 22:54:36 UHITS ITM IM
stored option Bin: \(\begin{array}{r}\text { DISPLA } \\ -8 \text { IMCH }\end{array}\)

FIGURE 56. FILLETED OUTSIDE EDGE EXAMPLE

SDRC I-DEAS 4.1: Object Modeling

FIGURE 5.7.. - FILLETED INSIDE EDGE EXAMPLE
spherical surface. This command is used to round a corner formed on the outside or inside of three adjoining surfaces which have previously been filleted with the FIITEI_TOOL_ command. When the three pairs of adjoining sides are filleted successively with identical radil, which requires fillet extensions on the corner end of the second and third fillet tools equal in length to the fillet radius, a point will result. It is this point that is rounded with the COFNER_FIILET command. The first input required for this command is the selection of this point. Then the length of the filler tool's side is requested, followed by the edge generation option, and its maximm deviation, the tool's color, and name for storage.

Figure 58. shows an example of how the CORNER_FIIIEF_TOOL_e cammand is used. The five block displayed show the steps required to create the fillet tools and corner fillet tool (rotated and move to the upper left for display), used to out the block in order to round the one corner.

This illustration was made with the "FEATURE ITNES" tumned on to show the edges of the facets created, and in hidden line format.

This example clearly illustrates how tedious and time consuming filleting (roumding) the edges of a solid model with the commands provided in I-DEAS 4.1 can be. But, in I-DEAS V, a new CONSIRUCT command "RounD" is provided, which can be much easier to use when rounding the edges of solids with a constant radius. No tools are created, and no cutting or joining operations are required. The user simply selects the edges that are to be rounded, and the radius to be used, and I-DEAS V does the rest. Figure 59. illustrates this.

SDRC I-DEAS 4:1: Object Modeling DATABASE: MEU SURFACE UNIT SUPPORT DESIGM - JEFFREY A. KERM VIEU : SUPT ISO (nodified)
object: e-CORME FILLET TODL

7-FEB-91 23:02:21

FIGURE 58. - FILLETED CORNER EXAMPLE

FIGURE 59. - I-DEAS V ROUNDING EXAMPLE

\section*{ORTPCT BIANKTNG}

An important feature of the Object Modeling should be discussed is object "BLANKTNG". Whether an object is made current by creating it, or by retrieving it from a storage bin, it will be visible (as long as it is within the viewport and the display of objects is toggled aN). But, it is possible to also have non-active objects visible along with the currently active object. In I-DFAS terminology, stored objects that are visible are "unblanked".

This can be very useful. Because, the user may be able to more clearly see the effects of changes that have been made to an object, if various versions of the object have been stored. It can also allow the user to see the spacial relationships between objects when orienting the current object. Also, the user can pick the end points on any facet of an unblanked object's facets when measuring distances, or when orienting the current object.

When I-DEAS is initially entered, the defaults are set such that the current object is left unblanked when it is replaced with another object, either by the creation of a new one, or by retrieving a stored one. If the user desires to make additional objects (that are stored in the current storage bin) visible, this can be done with the UNBLANK STORED_OBJECT Command. If the user wishes to make any "unblanked" objects invisible, this can be accomplished with the BLANK SIORED_OBJECT command. This command will allow the user to pick the visible objects to be blanked with the screen cursor, or by entering their LABETs; or all unblanked objects can be blanked by entering a "*". Objects can be blanked and unblanked by specifying their Label names of numbers. If their labels are unknow, the user can request a Directory of them.

\section*{CONSTRTCHTON COMANDS}

Object Modeling provides commands which can be used to cut, join, add, or intersect one object with another, to check one object for interference with another, and to cut one object with a plane. The operations all function by checking each facet of the solids for intersection with the other facets. The commands used for modifying objects, or creating new objects create new facets incorporating the lines of intersection found.

In some cases facets from the original objects are combined with new facets, and new objects are created. No new curves are calculated. Rather, the "precise" rational B-spline surfaces from the original object(s) are associated with the new object(s) to form their new "precise" geometries. This can result in facet edges that do not lie exactly along the intersection of the rational B-spline surfaces. But, it is only necessary to correct these errons in cases were the faceted representation doesn't approximate the precise object closely enough, such as when two objects of vastly different size, or with little interference have been operated on with these boolean commands. In these cases it may be necessary to "re-syncronize" the precise and faceted representations of the object. This can be done with the FACEI_REFINE and MOVE_TO FRECISE commands. Same coumands, such as SURFACE_BOURDARY_DISPLAY and WRITE, IGES preform re-syncronization themselves.

If two object's precise models overlap, but their facets do not interfere, the boolean operations may not find any intersections. If this occurs, the models can be refined to a higher level of faceting with the FACFET_REFINE Comand.

\section*{CIT COYMAND}

The CUI command is used to out one object with another. At least one on the objects must the stored. The other can be the active object, which may not have been stored. Any volume of the objecting doing the cutting which intersects the object being out will be removed fram the cut object. This can result in breaking the cut object into several bodies. If this occurs, any undesired bodies can be eliminated with the BODY DEEEETE Command.

The first input required for this operation is the selection of the first body (it can out or do the cutting). The default object is the currently active object. This makes it possible to perform successive boolean operations on objects without storing the resultants from each step. The next input needed is the selection of the second object. The default for this is a name of number of a stored object. For both the first and second objects, a ? can be entered to display the directory of the active object bin, fram which the selections can be made. Another option is to pick any unblanked object which appears on the display screen. To use this cption, a V is entered to select a visible object, and then the screen cursor is used to pick a point, face, sumface or body of the object desired. After the first and second objects are selected, I-DEAS asks which object is to act as the "cutter", by selecting FIRST_CUI_SDOND, or SEOND_CU1_FIRSI. If the user is using a back up of unstored objects (i.e., MANAGE, OLD_STACK_LENGIH greater than zero) and the currrent object has not been stored, I-DEAS will store it as OIDI before proceeding, and then complete the operation.

If the two object's colors were not the same, some of the facets of the new object will be of each of these colors. To change them all to
one color, or to change the objects color entirely, the COLOR_OF_OBJDCP command can be used.

If the resulting object is what the user desired, it should be slored to prevent its loss, before any further action is taken. In fact, if the operation was very complex and required long computing time, it is a good idea to SAVE the data base after the object is stored. This will prevent its loss in the event the scratch data base is lost, or if the system is exited without having executed a save.

\section*{JOTN COYMAND}

The JOIN command is used to combine two objects. Any overlapping bodies between the two objects will be combined into a single volume. If there are any separate, non-overlapping bodies involved, they will remain as separate bodies related to the new object created.

The first two inputs required for this operation are the selection of the two objects to be joined. The defaults and options provided for these selections are the same as were described for the CUT_OBJBCT command. Then, as was the case with the CuT OBJECT command, if the current object has not been stored, and the OLD STACK_LENGIH is greater than zero, I-DEAS will store it as OID1, and then complete the joining operation. The screen will then be cleared, and the resulting object. will be displayed. If desired, the object's color and orientation can be changed, any undesired bodies can be deleted, and then if satisfactory, the object should be stored.

If two objects are to be joined by "welding" them at a planar boundary, they should be oriented to touch exactly, or to overlay by more than the POINI OONNCIDENCE tolerance (set in the MODEL_FIIE,

TOLPRANCE meru) to avoid problems which can arise due to computational inaccuracy. This can easily be accomplished by orienting one object as desired and storing it. Then, the second object can be made gotten and the first object UNBLANKBD (or left on the workbench in Rev. V). Next, the ORIENT, MOVE TO command can be used to pick a point on the second object's surface which is to be joined to the first, and a point on the first object's joining surface. This will translate the second object into exact contact with the first. Then, if necessary, the second object can be rotated about this point to align the two planes to the joined, using the ORIENT, ROIATE command. Finally, if the second object is not intended to be joined at this point, if convenient, the second object can be translated in global, X, Y, Z, coondinates along the jointing plane, with the ORIENT, TRANSLATE ccmmand. Or, it can be translated along a user defined vector, a specified distance through the use of the ORIFNT, MOVE ALONG command. This command gives several methods for defining the vector, including keying in DIRECIICN_VALIES, and of picking POINT TO POINI start and end points for the vector. These orientation techniques are also useful when orienting one object which is to be used to cut another.

\section*{INIERSECT COMYAND}

The INIERSECI command is used to create a new object which consists of the intersection of two objects, which means that it will be made up of any volume of material that is common to the two objects being intersected. This operation, like the CUI and JOIN commands, is couported besed on the interference between the two objects' facets, and not on the intersection of their precise (rational B-spline) models. Thus, it
may be necessary to increase the objects' faceted model resolutions with the FACEI_REFINE operations, in order to yield the desired results. The inguts and post result operations described for the CUT and JoIN commands apply to this command.

\section*{PLANE COH COYYAND}

The PIANE CUI command is used to cat an object with a epecified 3D plane. The choices for output are: the volume of the object on the POSIIIVE SIDE of the cutting plane; the volume of the object on NEGAIIVE SIDE of the cutting plane; or the object's CROSS_SECIION. The two "sides" of the cutting plane are determined by the direction of the arrows which are displayed on the positive side of the cutting plane.

The first input required is the specification of the cutting plane which is to be used. Several options are presented for this selection, which are: COFFFICIENSS; THREE_POINT; POINI_NORMAL_VECICR; DISIANCE_NORNAL_VECIOR; XY_PIANE; YZ_PLANE; XZ_PLANE; SURFACE_PLANE_(EXISITNG); OFFSET_SURFACE_(EXISITNG); and USE_VIEN_PLANE. If a plane has been defined for a prior PLANE_CUT, its COEFFICIENIS will be the default values presented if the CEFFFICIENI option is selected. If one of the global planes (e.g., XY_pane) is selected, its position along the normal axis (e.g., the 2 -axis) will be requested. I-DEAS 4.1 requires that this be input ramerically, but gives the option to MEASURE the location. This allows the user to use the MEASURE options (including the cocrorNATES_OF_POINT) to determine the value to be used, and then to key it in. I-DEAS \(V\) give an option to pick a point directly.

Once the plane is defined, the user is prompted for the output desired. If either side is selected, the program will cut the object
and create a new carrent object consisting of the solid volume(s) an that side of the plane. If Cross_sicirion is selected, the user will be prompted to imput a name or rumber for the cross-section to be stored under as a profile. The profile can then be used as any other profile which has been created in the PROFIIE task.

The curves in the cross-sections' profiles will be rational B-splines, and not faceted arves. The exactness of the aurves yielded are determined by the tolerance which is preset with the YODEI_FIIE, TOLFRANCE, CROSS_SECIION COmand. Because of the higher degree of precision, coupared to the faceted models, they can be used to measure clearances more accurately than the interferences check with the INTERFERENCE Command.

\section*{ORTPNT MIPNU}

Object Modeling contains a mem devoted to commands which can be used to manipulate the ourrent object in global 3D space.

TRANSLATE is used to move the object in 3D space by keying in \(X, Y\), and Z values in the active unit system. If the desired values are not known, a MEASURE option is presented within the TRANSLATE command. This allows the user to measure the distance between selected entities, and to call up the coordinates of selected points. Once the values are known the user can key them in and the solid will be move to the new location.

MOVE_TO is used to pick a point on the object to be moved, and a point in space to which the first point will be moved to. once these points have been picked, the solid will be translated in space such that these point will coincide. Thus, it will "slide" to the new location,
without rotation.
The MOVE ALOMG command performs a translation of the object like the MOVE_TO ccumand, except the translation is based on a user defined vector in 3D space. This command presents several options for defining this vector.

The ROTAIE ccmmand is used to pivot the current object about the global X, Y, and \(Z\) axes, pivoting about a selected pivot point. The default pivot point is the origin. Thus, the active object can be pivoted about the origin by typing:
/OR R <REIURN> <REIURN,
followed by the desired rotations separated with commas, as:
X-ROIAITION, Y-ROTAIICN, Z-ROIATION <REIURID,
in degrees (e.g., 10,0,30). If another pivot point is desired, rather than entering a return when proupted for the selection of the pivot point, the user can use the activated screen cursor to pick a visible point. Or, a selection can be made from the meru presented for other options, including: selection of a point's LABEL; keying in a point location (KEY_IN_XYZ); selecting a TRANSLATED point; an option to INIERPOLATE between two points; selecting the object's CENIER_OF_GRAVITY; Or picking a working set or profile point (POINT_FROM 2D).

The POINT_PIVOT coumand is used to rotate an object about a selected pivot point through the aligrment of two implied lines. The command is based on the selection or specification of three points. The cptians presented for defining these points are the same as were discussed above for the ROINITICN command. The first point that must be defined is the pivot point. Next the "point to rotate from" is required. These first and second points define an implied line which
defines the object's current orientation in space. Finally a "point to rotate to" is required. This point and the pivot point define and irplied line which defines the desired orientation for the object. Then the program rotates the object about the pivot point such that the second implied line aligns with the first implied line.

The VECIOR_PIVOT will rotate the current object about a eelected pivot point such that two user defined vectors are parallel. The user is proupted to pick the pivot point. Then the program requests the definition of the first vector. Several selection methods are presented, with POINT_TO_POINT as the default. If it is used, the user picks the start point for the vector and then picks its end point. Final the user is asked for the definition of the second vector. Again the user can use the default POINT_TO_POINT vector definition method to pick the start and end point for the second vector. Once the imputs are complete, the program will rotate the object about the pivot point such that the first vector is parallel with the second vector and pointed in the same direction.

The ORTENP COmmand ABCUI_VECIOR is useful for rotating the active solid about an axis other than those parallel to the global axes. The command leads the user through the definition of the vector used for the axis of rotation. First the user is prampted to select a vector definition method, and to define the vector. The vector need not be positioned on the axis of rotation. It only serves to define its orientation. After it is defined, the program will prompt the user to define a point on the axis of rotation which will serve to position the vector. Then once the vector's orientation and position are defined, the program asks the user to select between the ROIAITICN_ANGLE and POINT_TO_POINT
methods for defining the amount of rotation desired. If the ROTANTON_ANGIE method is chosen the user will be asked for the angle in degrees. If the POINT_TO_POINI method is used, the program will ask for two points. Then it will define an imaginary line from the points perpendicular to the axis of rotation, and then it rotates the first line and the object until it is parallel to the second line.

The THREE_POINI_MEIHCD redefines the global axis system about the active object, to in turn redefine the orientation of the object with respect to the axes. The first point required is the new origin. The second point is any point which is to lie on the X-axis. And, the thind point is any point which is to lie on the new XZ plane. once these points are defined, the axes will be redrawn in the new orientation.

Each of the eight ORIENP commands will result in the object automatically being redisplayed in it new orientation, unless the user has chosen to turn this feature off. If that is desired, the user can input MDDEL_FILE, USER_INIERFACE_SNITCHES, AUIO_DRAN, OFF.

\section*{INTEFRPOTATION}

Many I-DEAS operations involving the specification of points in space allow the user the option to INIERPOLAIE. This can be used quite creatively, and thus deserves same discussion here. When INTERPOLATE is selected as an option from within an I-DEAS command, the user is proupted to pick two points in space, and then to key in the percentage for interpolation between them. The percentage value is input as a whole rumber (i.e., 10.5 for 10.5\%, and not 0.105). The default value is always 50.0 (i.e., 50\%). Once the percentage is keyed in, the program calculates a point in 3D eqpace which is located that percentage of the

\begin{abstract}
distance between the two end points, away from the first point selected. It then completes the command's operation in which INIERPOLATE was selected (e.g., creating a point at that location, or using that point as an end point for a vector being defined, etc.).
\end{abstract}

\section*{MEASURPYIFNT COMYANDS}

Object Moceling provides the following measurement camands: POINT_TO_POINT, POINT_TO_INNE, POINT_TO_PLANE, THREE_POINI_ARC, ANGLE, and COORDINATES_OF_POINI. The POINT_TO commands are used to pick points and lines, or planes between which the program will calculate the distance. The THREE_POINT_ARC Commands allows the user to measure the radii of arcs. The ANGIE MEASURE Command allows the user to measure the angle between two lines. It requests the selection of a point on the first line, a point at the vertex of the angle to be measures, and a third point that lies on the second line. The program will then calculate the angle between the two lines, in the plane of the three points selected. Finally, the COORDINATE OF POINT command does what its name implies. It lists the coordinates of an point specified.

\section*{MODIFYTMG OBJDCAS}

Object Modeling contains commands which can be used to alter solids in order to produce new objects or to refine objects through the movement of their facets, and by reflection of the existing facats. Some of these commands perform operations which can not be tracked in their objects histories. These end with an "el". Other commands in this menk, those ending with an "*", remove same of the objects' precise surfaces, and result in the daletion of their object histories. The
remaining commands changes are recoeded in the objects' histories.
Because these operations can drastically alter the objects, before they are executed the program will determine if the existing object has been stored. If it has not, and if the OID_SIACK_LINGIH has been set to a value greater than zero, the program will store the object as oudl before altering it.

Some caution must be taken when using these commands. Because these commands increase the number of facets contained in the objects model, some at a rate of two raised to the iteration selected plus one power (i.e., \(2^{\wedge}(i+1)\)), the results can easily get unwieldy. This can even result in numbers exceeding the program's allowable limits. More facets require more: time to draw the fully faceted model on the display screen; disk space to store; and camputation for further cperations, etc. Thus, the lowest number of usable facets for the desired results (e.g., for understandable display or for further object creation, etc.) is desired.

The FACEI_ REFINE \& command, which was mentioned along with the BOOLEAN Ccumands, is used to increase the number of facets in the model by decreasing the maximuln deviation between the facets' edges and the object's precise (rational B-spline) surfaces. This does not effect the precise model. But, it can be helpful, or even necessary, for the proper execution of some other camands which rely on the faceted models, such as the CUI and JOIN commands. This comand first asks which of the current object's surfaces are to be refined. The surfaces can be selected by cursor picking of VISIBLE surfaces; by keying in their LABEXS; or they can all be refined, by entering an "*". Once the surface(s) have been identified, the user is prompted for the method of
subdivision that is desired; aither ABSOUUEEDEVIAITION or PERCNNT OF_EDGE LINGIH. These are the same methods presented for the creation of objects, described earlier in this chapter along with the EXIRIDE comand. If a smaller percentage or absolute deviation value is applied than was used to create the object, a finer faceted model will result. If the same deviation is applied, only areas which were created at intersections with CUI and JOIN operations will be refined. In either case, the faceted model yielded will more closely approximate the precise model. Once the deviation method and the maximum value have been ingut, the program will ask for maximum number of subdivision iterations that are to be performed on each facet associated with the surfaces being operated on. The default is 2 , and the maximm is 5 . This can be used to prevent lang processing times. Finally, a point convergence tolerance is requested. This effects the distances between the new facets' corner points, and the model's precise surfaces, with smaller values resulting in higher precision.

The Surface Split coumand is used to subdivide the facets associated to selected surfaces on the object, yielding a finer faceted model. It also places all of the new facets' corner points within a specified distance from the objects precise surfaces. This can be useful for increasing the number of points for use with same of the other SHAPE operations, and for the TWEAK operations. The user is prompted to select the surfaces to be modified, with the same options for surface selection presented in the FACET_REFINE a command. Next the user must ingut the maximum ramber of subdivision iterations desired. This can be from 1 to 5, which will resulting each edge of the selected facets being subdivided into 2 raised to the iterations power, new edges. The final
ingut required is the point convengence tolerance. This will determine the allowable distance between the new corner points and the object's precise surfaces.

The MONE_TO_PRECISE command can be used to clean up objects that have been created through the use of the CUF and JOIN operations. These objects may have points that define the intersections that were used in these operations which do not lie on the object's precise surfaces; unlike objects developed with the CREATE commands, whose points always lie on the rational B-spline surfaces which define the solid's precise surfaces. The user is ask to select the points that are to be modified. Two options are provided for this selection: IMPRECISE_POINSS, and AIL POINIS. I-DEAS carries internal markers on each point telling the program whether they lie within a known distance to the precise surfaces. Thus, it is possible for the program to modify only those points which are not within the convergence tolerance value, or all points can be reevaluated. Once this selection is made, the user must input the convergence tolerance that is to be applied to the points being moved.

The REFTFCI cammand is used to create new solids, or to couplete the creation of whole solids by reflecting the existing object across a plane of symmetry. This allows the user to create symmetrical solids by creating half of the object, and then reflecting that half over the plane of symmetry to complete the part. This command can also be used to create a new object which is a mirror image of the existing object. Which allows the user to design a "left hand part" and then reflect it to create a matching "right hand part", or visa-versa. To provide these coptions, the commands asks for the desired output, which can be either BOIH_SIDES, or the REFIDCIION_CNLY. It then asks for the plane of
symmetry to be used. The options for plane specification methods are the same as were described for the CUI command.

The SCALE command can be used to scale the object up or down in each of the three global Cartesian directions. This allows the user to increase of decrease the object size. One example of the use for this is: if an object was created with the active unit system set to millimeters, when the user was entering lengths in inches, he could change the active units to inches, and then use the scale command to increase the objects size back up to the appropriate values. Because this coumand allow the user to input separate value for the \(\mathbf{X}, \mathbf{Y}\), and \(\mathbf{Z}\) scaling factors, it can be used to distort the object as well as simply changing its size. The first input require by the SCALE command is the specification of a point about which the object is to be scaled. The selection of this point can effect the resulting object's location is space. This is because the object's point locations will be multiplied by the scale factors entered, with respect to the point specified. But, this only means that the resulting object may be translated in space, which will require same use of the CRIENS, TRANSLATE command to reposition it as desired. The final inputs required by this command are the X, Y, and \(Z\) scaling factors desired.

The Surface WARP_e command can be used to alter the contour of an objects' precise surfaces elastically. It allows the user to specify a point on the interior of one of the object's surfaces (i.e., it can not be a point on the edge of a surface) to move in space. Once a point is specified, the user is asked for the X, Y, and 2 displacement desired. This is followed by a proupt for the radius of influence within which the modifications are to be made. This is the radius of an imaginary
sphere centered at the point specified. Any of the points on the surface containing the point that was specified, which lie inside this sphere can be displaced by this operation. The default radius is the maximm value which will not include any of this sunface's boundary points. The last cptions presented by this command are for the type of shape the modified surface is to have. These are either IMNEAR, CONCAVE, or CONVEX. The program will displace each of the object's points that are contained in the imaginary sphere of influence by fractions of the displacement input for the specified point, with the fractions ranging from 1 to 0 depending on the points' locations relative to the point specified. Thus, if a INNEAR shape is chosen, the resulting surface will be conical. If CONVEX, or CONCAVE are selected, the user will be asked for a weighting factor, which will be used to control the transition of the fractions applied for each point's displacement.

The operation does not add any new points, or facets to the model. It can only displace those which already exist. Thus the surface spilir or FACEI_REFINE commands may need to be used to generate a finer faceted model for warping.

The author has not used this operation for this thesis, or any other projects. But, it was experimented with for this writing, and it appears to be very powerful for use in creating complex shapes and fine details. As an example, Figure 60. shows a sphere which was modified with this command to impose a concave "dent" in its surface.

SDRC I-DEAS 4.1: Object Modeling OATABASE: MEU SURFACE UNIT SUPPRRT OSGM - J.A.KERH VIEd : No stored VIEU Objask: OBJECT 1 -UARPED SPHERE

Object Modeling also provides several special object modification command which perform similar operations to those discussed above. But, each of these commands may result in a loss of association betwean the faceted models and the precise rational B-spline models surfaces. These special Surface and Facet modification commands are: BEND_*; BLERD_*; SIREICH_*; WARP_FACEIS_*; THICKNESS_*; AND SURFACE_SCALE_*. The author has never found a need, or reason to want to modify an object in any way that would cestroy its precise surface definition. Thus, without any experience in using these commands, their operations will not be discussed here.

One special modification command that was used for this thesis is the BODY DEMEIE command. It was used to delete unwanted bodies from objects which included several bodies that were created when objects were divided with the CUT ocmmand.

\section*{APPENDIX IX \\ I-DEAS ASSEMBLY MODETING OPERATICNS}

\section*{INTRODUCITON}

The Assembly Modeling provides commands for use in the construction assemblies of solid models, orienting the entities used in assemblies, adding auxiliary geametry and notes to the assemblies, and to display and interrogate system assemblies. An assemblies created in I-DEAS is constructed as a "HIERARCIY" of "INSITANCES" of COMPCNENT, and subSYSIEMS.

Assembly Modeling is like Object Modeling in the way entities are treated as "active"; inactive, but visible (i.e., "unblanked"); stored; and saved. Also, like in Object Modeling, assembly entities are only held in the program's working memory, unless they are stored, with SIORE commands, into the scratch data base files. They are not saved into the permanent data base files, unless a SAVE command is executed.

\section*{ASSFYRIV MODETS' SIRUCIURE}

The organizational structure of I-DEAS Assembly Models is based on a tiered hierarchy, built is a pyramid fashion. I-DEAS uses the term "system" for the combination of objects into groups that are associated and located with respect to each other. At GEA these same concepts are
usually termed "subussemblies" and "assemblies". But, the concepts are the same. The user wants to combine sets of objects as they will be assembled in the actual mechanical system's construction or manufacture. These sets of objects must be located in space such that they will fit together as they are designed to be assembled. Also, it is desirable to be able to construct pieces of the overall system in subsystems or subassemblies one time; and then to be able to use these subsystems several time throughout the complete system assembly requiring only the positioning or orientation of these subsystems with respect to the couplete system. The Assembly Modeling comands provide these capabilities.

Subassemblies are constructed as "systems", and then they are stored, and larger "systems" are constructed using stored "systems" as subassemblies. Thus, I-DEAS always refers to "systems", even though they may be used as sub-systems in other systems. Solid models that are used in the Assembly Modeling are call "couponents". When camponents or sub-systems are used in other systems, they are call "instances" of the stored component or aubsystem.

\section*{CUIRFYI SXSTYP AND SICRAGE}

Assembly Modeling works like the other I-DEAS Mocdules, all of the work is done on a temporary "current" systen assembly. Any changes made to the current system do not effect any of the entities that have been stored in the working model files or those that have been saved in the permanent model files. Once a system is assembled to the user's satisfaction, it should be stored. This will stoce it in a system assembly storage bin of the user's choosing, within the working or
"scratch" model files. Then when the user uses the SAVE coumand, the changes made in the scratch files will be saved by writing the scratch files over the permanent model files.

Similarly, Assembly Modeling also provides a NANAGE menu which have the same type of commands as Object Mocieling's MANAGE merus. With these commands the user can manage the storage bins, components, and systems. They also provide comands used for interfacing with external programs, Object Mocleling, and several of the other I-DEAS Families of programs.

\section*{CREATING OMYRONFNTS AND TNSTANCES}

When a solid model is to be used in system assembly, a "component" must be created, and stored in the current System Assembly system bin with the CRFATE command. Each component acts as a locator in the Assembly Modeling for the gecmetry that is stoced as an OBJPCT in an Object Modeling object bin. Once a component is created, I-DEAS will not allow the user to delete the solid model stored as an OBJBCT in Object Modeling. This prevents the user from inadvertently destroying a system assembly.

In addition to storing components, the CREATE cammands also adds an "instance" of that component to the current system. I-DEAS refers to an instance as a "place holder in a system". It tells the system assembly which component or subsystem the instance represents. An instance also contains the component or subsystem's orientation in a system. This allows a several systems to contain many "instances" of a single "camponent". But the campanent only needs to be stored ance in the system storage bin. With this method of system assembly, changes to the orientation of an entity in a system assembly, only change an instance's
orientation information. The orientation of the couponent remains constant.

The CREAIT commands allow the user to specify which Object Modeling object bin contains the object (s) desired, and then to select the specific object(s). At the object bin and object selection prampts, a "?" can be entered to view a directory of the available entities.

After the bin and an object have been selected, the user is asked to name the new component, or to enter its number for storage in the system bin. The defaults are the solid model's object name, and the next available rumber.

After the ccmponent is identified, the program asks for a name for the instance that is being added to the current system. The default instance name is "INI". If this component is "instanced" a second time in the same system, the instance's default name will be "IN2", and a third will be "IN3", etc. But, the user can choose to name the instances in a more meaningful way. For example, if an electric range cooktop system assembly was being constructed, the user might choose to name the four surface unit ascemblies: LF SU; IR SU; RF SU; and RR SU, to indicate which instance is the left front, the left rear, the right front, and the right rear surface unit.

In addition to naming each instance, the program automatically assigns a sequential "hierarchy number". The system is inplicitly given the hierarchy muber 1. If a system is instanced into another system as a subsystem, that instance will be assigned the next sequential hierarciny number, and the other instances in the subsystem will assigned sequential numbers following the subsystem's number.

The ALL_OBJDCIS_FRCM_BIN command will bring all of the solid models stared in ane Object Modeling object bin into the Assembly Modeling. Each object will be stored as a component in the current system bin within Assembly Modeling. Their componant names will be made the same as thair object names. If an object name already exists in the system bin, the program will prompt the user for a new name or number to use in creating the component. If this cocurs, the default new number will be the next available instance number, and the default name will be COMPCNENI\#, where \# will be the default number (i.e., CONPCNENI15). Each new component will also be instanced ance in the current gystem. The instance names will all be made IN1. Once the components and instances have been created, the user can change their names through the use of the MANAGE, RENAME and INSTINCE, RENAME_INSTANCE COmmands respectively.

\begin{abstract}
INSIANCES DN THE CURRPNT ASSFYBIY YODEI
Once components have been created and stored in the current aystem bin, they can be added to the current system assembly, without the need to create new components. The instances in the current system can also be duplicated, replaced, deleted, and renamed. These operations are performed with the commands presented in the INSIANCE menu, which are logically named: ADD_FRCM_DIRECTORY, DUPLICATE_INSTANCE, REPLACE_INSIANCE, DELELE INSTANCE, and REVAME INSTANCE respectively.
\end{abstract}

\section*{ORTENTATION OF TNSTAMCES}

The instances of couponents and subsystems in the current system can be oriented with the commands in the ORIENT memu. These cammands
function much like those discussed in Chapter \(V\), for the orientation of solid models, and therefore do not need to be discussed here. But, there are differences which do warrant some discussion.

The graphical requesentation of the effects of each of the ORIENT coumands will be displayed on the terminals scceen in one of two ways. The choice between the two is made by toggling the MODEL_FILE, USER_INIERTACE SWS, AUIO_DRAN_SNItch ON and OFF. If the AUIO DRAN_SN is ON, when an orient coumand is exscuted, the effected instance(s) will be erased, and then redrawn in the new orientation. If it is OFF, they will not be redisplayed. An arrow will be drawn on the screen which points from the instance's original position to their new position. The next DRaw or REDIsplay command that issued will cause the instance(s) to be displayed in their new orientation(s).

When instances' orientations are modified with these commands, they can be moved relative to one of several coordinate systems. Either the current system's, the entity's, or another entity's. The user is prompted for the selection of the desired coomdinate system during the escecution of the ORIENI coumands.

The user can store multiple configurations of the orientation of the current system's instances with the Hierarchy, ORIENP, SIORE command. These configurations also store the blanking data for the system's configuration that is stored. This feature allows the user to store several configurations of a system, without the need to store them as separate systems. once a configuration is saved, it can be reestablished with the Hierarchy, CRIENT, GEI_CONFIGURAIION Command. This operation will allow the user to store the configuration of the entire current assembly model, or of a selected subsystem. If a
subsystem's configuration is store, it is associated with that subsystem. If that subsystem is made the current system, the configurations stored will be available. The current system's configuration is automatically stored as 1-AUICNATIC_SIORE/GET whenever the system assembly is stored. This SICRE command is like all other I-DEAS stare comands, it only stores the canfigurations in the scratch model files, and they will only saved in the permanent model files when the user issues a SAVE.

Each of the ORIENT commands require the user to pick the instance that is to be re-ariented. Both component and subsystem instances can be oriented with these commands. Fach instance in the current system is identified by a component or system name and number, system bin number, hierarchy number, and instance name. Because of this, several methods are presented for the selection of the instance.

VISIBLE_INSIANCE is used to picked with the entity with the screen cursor. Instances can be picked at the corner of a facet or the end of a line. If the user has difficulty getting a clear shot at picking an entity, the ORIENT commands provide IRAN and CHANGE VIEN options to improve the visibility of the entities desired. Once an entity is picked, the program will present a list of its instances in the carrent system. Thus, the couponent instance, and any subsystem(s) in which it is instanced will be listed. The listing will present the full description of each (i.e., their component or system name and number, system bin number, hierarchy number, and instance name). This allows the user to choice whether the single component instance's or a couplete subsystem's orientation will be changed.

In addition to the ability to pick an entity for orientation from
the display screen, the ORIENT commands also allow the user to type in epecifications for the instance desired. The LABEL_FROM_CURRENP option allows the user to input an entity's name or number. The HIERARCHY_NUMBER option allows the entity to be specified by its hierarchy number. If either of these cptions is used, and the user doesn't know the name or number of the desire entity, DIRWCICRY options are available within these commands. By typing a "?", a listing of the entities or the hierarchy of the current system will be displayed.

The ORIENT commands provides the capability to move more than one instance at once, and they do not have to be in the same subsystem. When the user first enters an orient command, before an instance is selected, the user can select INCIUDED_INSIANCES fram the merm presented. This will cause the program to continually prompt the user to select entities, until the user issues a quit with the default <REHUENS.

The Hierarchy Task's ORIFNI commands also allow the user to make additional changes to an instance's orientation, without the need to re-select the entity. When the program proupts the user for the selection of the instance to be oriented, if user selects PREVIOUS_INSTANCE from the command's memu, the last instance(s) will be selected.

When the user first enters an orient command, before an instance is selected, the user can select REPGAT. This allows the user to move entities in steps, and to store each step as a system configuration if desired. This could be used to create animation sequences, or to provide several ateps in a mechaniss's motion for investigation (e.g., interference checks). REEPEAT will cause the program to ask the user for
the number of times to repeat, and if the configurations should be stored. If the user answers that he does want to store the configurations, the program will prampt the user for a configuration name or number for the storage of each step. If the user would like to use the default names for all of the step, he can enter a single ":". The total motion of the instance baing oriented will be divided by the number of steps specified into equal sized steps.

The user can choose to create duplicates of an instanced couponent or subsystem as it is oriented, rather than moving the present instance. This is dane by selecting DUPLICATE_ORIGINAL before selecting an instance in one of the ORIENT operations.

The INCLUDED_INSTANCES, REPEAT, and DUPLICATE ORIGINAL options can be used in combination during a single orient operation. To halp the user keep track of which options have been selected, the Hierarchy's ORIENT commands contain a STATUS option, which will display a listing of these options' status.

As an alternate to using the TRANSLATE and/or RONATE commands, along with INCUUDE_INSIANCAS, and REPPEAT options, the Hierarchy Task's ORIENT, MUIII_INSIPNCE_ORIENT CCMmand (/OR MIO <REIURN>) Can be utilized. This commands prompts the user for the translation and/or rotation of multiple instances. It allows the change in orientation to be different for each instance selected. It also proupts the user for the number of times the instances are to be REppAlled through the orientation, and it asks if the configurations are to be stored.

The ORIENT menu provides an ALIGN command. It can be used to set the translation and/or rotation values of one instance equal to those of another instance's. If the translation values are matched, the moved
instance's origin will coincide with that of the other instance selected. If the rotational values are matched alone, the instances' coordinate systens will be parallel to each other.

The most complex method presented for the orientation of an instance is the MAHRIX MEHHOD. It allows the user to orient an instance with respect to either the current system or to the instances parent subsystem. This is accomplished by entering the twelve value for the program's internal transformation matrix, whose mathematical format is:

The user is prampted to enter the nine values in sets of three, separated with comas, by row (i.e., row \(1=\) A , B, C, etc.) in the matrix.

Assembly Modeling provides two ORIENI conmands which can be used to return the systens orientation to a previous or known state. This can be very useful if the results of an executed orientation operation yield undesirable results. The UNDO_LAST_ORIENT Coumand does what its name implies. It return the system's orientation to the same state as it was when it was last stored, or gotten fram starage. If the user siores the system, the previous ocientation is overwritten, and the UNDO camand is reget to the new configuration. The RESEI command returns all instances
to their initial positions, as they ware brought into the system. This is done by deleting any orientation values from their instance definitions. RESEI presents a menu from which the user can choose to reset either the translation or the rotation only, or both.

Assembly Modeling's ORIENT and LIST menus contain the same MEASURE capabilities found in the Object Modeling. This allows the user to measure the distances between points (i.e., ends of line and facet corners) and points, lines, and planes; to measure arcs; and to measure angles. It also allows the user to list the coordinates of points. This can be helpful when determining how far an instance needs to be translated, or to investigate the systens layout. The TRANSLATE command also offers MEASURE as an option within the execution of its operation.

Assembly Modeling's ORIENT menu offers a sub-menu which is not available in other I-DEAS modules. Its commands are used to view system assemblies with their instances spread apart. This can be useful for getting clear shots at items when making screen cursor picks. It can also be used in the creation of exploded view drawings. Two commands are presented when the EXPLODE sub-menu is requested: EXPTODE ALCNG_AXIS and INITIAL_SPREAD. Systems can be exploded several times if desired, and the two EXPIODE ccmmands can be used in together.

These coumands alter the current system's orientation configuration. Therefore, if the user wants to retain the current configuration, the CRIENT, SIORE command should be used. This will allow the current system configuration to be retrieved later, if needed.

The EXPLODE ALONG_AXIS Comand will translate all of the entities in the parent system selected, alang a single Cartesian axis. The entities are separated along a specified axis, with a user specified
minimm spacing between each entity. This can be helpful in the development of exploded view drawings. For example, at GEA, this could be used to develop the product service parts catalog illustrations. This command only explodes the instances in the system selected. The default system is the entire current system. But, by selecting another VISIBLE SYSIEM, or another system's label or number, subsystems can be exploded first. once the desired degree of explosion of a system assembly is achieved, it can be stored as a configuration for future recall.

The INITIAL_SPREAD command explodes all entities in a selected system (the current system is the default) about the system's z-axis. They are spread out radially, and are separated by dividing the \(360^{\circ}\) spread evenly by the total number of entities in the system selected. The user is prompted to input a "spread factor" (default is 1.0). This factor is multiplied times a calculation the minimm/maximum ratio of boxes that enclose each entity and the entire system, times the vector direction the entity that is being translated, when moving each entity.

\section*{ASSPYBIY YODFTHNG'S CONSTRICLTOM COYYANDS}

Assembly Modeling contains several construction commands which can be used to cut and intersect objects of component instances in the current system assembly, and to check for interferences between its component instances.

The CUI, INIERSECT, and PLANE CUI Commands function in much the same way that they do in the Object Modeling Module. The differences between the operation of these commands as presented in Assembly Modeling are because of the differences in working on systems of
component instances versus working on single objects. But, the same limitations and tolerancing issues exist in performing these operations on assembly models as they do on objects. Therefore, the reader may want to review the discussion on these commands and their limitations presented in Chapter V.

The construction operations which yield new objects in the object Modeling Moctule, will yield new Object, Camponents, Instances, and Systems in the System Assembly Module. Therefore, when these commands are escocuted on the current system assembly, the user will be prampted to specify the Object bin within Object Modeling into which new objects are to be stored. They will also ask for the entity bin within Assembly Nodeling into which new couponents and systems are to be stored. Then the software will automatically store any new objects, components, and sub-systems.

If any configurations had been stored for the current system prior to the execution of a construction operation, those configurations will automatically be updated and retained in the new current system which is created by these camands. But, the new system assembly will not automatically be stored. It will only exist as the working carrent system. If the user wishes to retains the results obtained with a boolean operation, he must execute the STORE operation. Likewise, the stored results will not be retained in the permanent model files unless the SAVE command is used.

Assembly Modeling also provides a CROSS_SECIIONS coumand that contains the ability to ganerate cross sections of the carrent system. These cross section will be made up of one or more 2D profiles constructed from the shapes generated. These profiles will
autcmatically be named and stored in the Object Modeling profile directary. A collection of all of the profiles produced will also be saved in the System Assembly Module as a cross section. Cross sections are stored in a directory which can be accessed and managed.

\section*{AUXITTARY GECYIGIRY YIFNU}

The AIXXITARY_GEOMEIRY memu preeent POINIS, LINES, and WIREFFRME menus. The commands in these memus can be used to add, orient, modify, delete, and list geanetry, that can be created in the current assembly model.

The AUXIIIARY_GECMEIRY mend also contains access to a NOIES mern. The NOIES commands allow the user to create text notes, and to position them for display in the current system's 3D space along with its gecmetry. These can be used to amotate entities that appear in the 3D displays. The NOIES commands allow the user to define, orient, modify, blank and unblank, delete, and setup the attributes for these notes.

\section*{ITSITING ASSFYBLY MCDETS' FHYSICAL PROPFPTIES}

Assembly Modeling provides commands in the LTST meru which can be used to compute and list the physical properties of the entire carrent system assembly. These properties are the combined inertial properties of all of the components, each with its own density, that exist in the aurrent system.

The components' physical properties must exist before the System Task can calculate the current system's properties. The components' properties can be calculated in Object Modeling when the objects associated with the components are created. If pcoperties are created
in Object Modeling, then when a system assembly component is created, the associated object's properties are assigned to the couponent. If physical properties are not created in Object Modeling, calculations are made, based on the faceted model, when a component is created, and the results are associated with the couponent. Finally, the user can use the COYPUIE_PROPERIIES to recompute, or enter a camplete get of properties explicitly, for each couponent.

Once a system's properties have been calculated, they are not automatically recalculated when changes are made to the system (e.g., adding or deleting components, or changing their orientation). Therefore, they must be recalculated. Once a system's properties are calculated, the system must be SIOred to retain the data. When this is done, and new properties of the system will be applied to all other systems which use it as a sub-system.

\section*{APPENDIX X}

I-DEAS DISRLAY OPIICNS OPERATIONS

\section*{DISPRAY OPTIQNS}

The DISPLAY_OPIICNS memu contains comands which can be used to create line, hidden line, shaded, and surface boundary displays. It provides command menus used to control the display of entities, labels, and tasks. Options for the control of the viewport, and display colors are located in this meru. Finally, customized display options can be stored, activated, and managed from within this meru.

\section*{ITNE DISRIAYS}

LINE displays are very similar to those produced with the global DRAN command. Except, LINE displays allow the user to control the display of feature lines. These feature lines are effected by the parameters that are established with the DISPLAY_ATIRIBUIES, FEATURE_ANGIE Command. The Line display merna allows the user to turn the feature lines CN and OFF, with the FEATURE_LTNE SN. It allows ITNE displays to be SEI_AS_GLOBAL, so that any subsequent GLOBAL_DISPLAY (GD) essecuted with produce a LINE display. A SIATUS coumand is presented which can be used to display the status of the parameters that as aet for this display qption. Finally, this meru provides an Exibcure camand
that causes the display screen to be erased and the display to be redrawn using the LINE display parameters.

\section*{HIDDEN ITNE DISPIAYS}

Hidden line displays can be setup and produced with the commands located in the DISPLAY_OPIICNS' HIDDEN LTNE sub_menu. Like the LINE display meru, HIIDEN_INNE meru contains: a FEATURE_LTNE SN; a SEM AS_gIOBAL command; and a SIATUS command. This merm also contains a RESOLIIICN command. This is used to control the sharpness of the display that is produced. It effects the number of raster display lines the program calculates. This is based on raising 2 to the power of the RESOUUIION value set (between 1 and 9), and multiplying that times 1024. The default RESOLUIICN value is 6 . The lower the value, the faster the display will be procurced. But, the higher the value, the more accurate the display will be. Finally, as with all of the DISPLAY_OPIIONS, an EXECUIE command is provided. This HIDDEN_LNE command allows displays to be created with all lines that are hidden from view to be removed from the display. This allows models to appear to be solid objects.

\section*{SHADED TYAGES}

SHADED_IMGES are the most complex of the I-DEAS display options. This display option allows the solid models to have their sumfaces shaded, such that they appear to be solid objects on the graphics screen. The SHADED_DNAGE memu provides several options for use in customizing shacked image displays, in addition to the same Expcure, SEI_AS_GOBAL, and SIATUS commands that the other display options types provide.

The OVERLAY FITCDEN SN is used to toggle aN and OFF the display of hidden line images of the solid models over their shaded images. When turned ON, this can aid in distinguishing between the objects various surfaces. The COLOR OF_OVERLAY command is a companion to the overlay's aN/OFF switch. It is used to specify the color of the hidden line overlay.

PAL mHE calls up a sub-meru that can be used to display the preset colors that can be specified for use with any of the I-DEAS entities. It also contains a COIOR_CUBE command which yields a display of six side of a cube which is shaded with continuously varying colors that are labeled at its corners with the primary color combinations that it takes to create the colors. This can be used along with the ENIER and MODIFY user created colors, by mixing percentages on the primary colors (red, green, and blue). The PALEMTE memu also presents DETEIE, IIST, RENAME, and SIATUS comand which can be used to maintain user created colors.

The SHADED_DNAGE memu also provides a LIGHITNG memu. This presents commands that can be used to CREATE, MODIFY, SKEFCH and manage light sources. These light soumces can then be made CURRENT, and the next time a SHADED_IMAGE display is EXECUIFD, the shading will take the lighting into account.

The most complex part of creating shaded images that appear to be pictures of actual objects is the design and setup of the lighting used to illuminate the images. This can require many iterations of everimenting with various settings before the desired results are achieved. This is not difficult, and the default setting can give reasonable good shaded images.

When light sources are created, the user can use a light at an "INFINIIE_DISTANCE", or BARE EUMB, SPOT_ITGHI, or FLOOD_LIGHT types of light scurces. The user can store light scurces by name and/or number. Lights at an infinite distance must be defined by a vector method, defining the direction in which the light will shine. Bare bulb, spot, and flood lights sources can be located in space through the selection of a VISIBIE_POINT, a TRANSIATED_POINT, or by keying in a KEX_IN_SCREEN location, or KEY_IN_ MODEL location. If a light is created with its location referenced to the screen rather than to the models space, it will remain stationary when the object(s) are moved in the viemport. But, if they are tied to the model's reference frame, the will move with the objects. A bare bulb requires the user to "enter [the] distance from [the] source at which [the] intensity applies. The intensity is 100\% by default. To change this, the user must MDDIFY the light source. This is true for all light sources. If a spot or flood light is created or modified, in addition to the location of the light, a location is required for the TARGEF of the light's rays, and a CONE ANGIE is required to limit the volume on space that the light will illuminate.

When a light source is been created it automatically becomes active in the current working viewport. Several light sources can be used in the same viewport. This is accomplished by executing the Currasw command from the SHADE IVAGE, LIGHIING menu. This coumand proupts the user for the name or range of numbers of the light sources that are to be used. This replaces the previous list of light sources, and the coumand will continue to proupt the user for additional lights until the user enters a <REHURN> without a name or number. The SIAtus command can be used to list the current light source(s).

The IIST command can be used to list the settings of any stored light source. This includes its definition method (type of light), reference frame (screen \(\sigma r\) model), the position of the light source and its focus point is applicable, the light's color, intensity, at distance, and its angle of lighting is applicable. It will also list the viewports in which it is currently enabled.

Light scurces' settings can be changed with the MODIFY command. This command will proupt the user for the modification of all applicable parameters for the light source that has been chosen for modification. These parameters include: COIOR, INIENSITY \%, INIENSITY_AT_DISIANCE, FOCUS_POINT_POSIIION, LIGHI_SOURCE_POSITION, ITGHITNG_CONE_ANGIE, and REFERENCE_FRAME. Once the user has made the desired modifications, the default (DONE) can be entered with a D or simple by entering <REIUFN without any input. The command will then process the changes, store the modified light source, and then terminate the MDDIFY command.

The SKEHCH Command will cause I-DEAS to display an "*N at the location and focus point of each of the currently active light sources, and a line between each light's *'s. This can aid the user in positioning light sources to accomplish the desired lighting effects.

In addition to using direct lighting techniques with specified light sources, the user can apply ambient light. This is specified by entering an AMBIENI VALIE. This value is the percentage of the maximum ambient light that could be applied. This is entered as a whole number (i.e., 10.0 is entered for 10\%) between 0 and 100.

Finally, once all of the lighting has been set up, the user can chose to filter of amplify the current lighting's effects. This is done with the EXPOSURE Command, which prompts the user to enter a "fraction".

This value can be rumber between 0 and 100. The initial default value is 1. Any value less that 1 (i.e., a decimal fraction) will act as a filter, and any value greater than 1 will act as an amplifier.

The effects of the various lighting technigues are also effected by the DISPLAY AIIRIBUIES that are specified for each stored object. These attributes are discussed in a following section in this chapter.

Other shaded image options presented in the SHADED_INAGE meru. Several toggle switches are located in this mern. The TRANSLUCENCY_SN is used to turn ON and OFF the processing of translucency of objects Whose TRANSIUCFNCY DISPLAY_AITRIEUIE has been specified as a non-zero value. The PRECEDENCE SN is used to turn ON and OFF the processing of precedence of objects whose PRECEDENCE DISTLAY AIIRIBUIE has been specified. Objects with higher precedence values will be displayed more visibly that those with lower values. The GRAYSCALESN is used to turn ON and OFF grayscale processing on color display terminals. finally, the REVERSE_HARDCOPY SW is used to turn ON and OFF reverse grayscaling on non-color terminals.

The SHADED INAGE meru allows the user to specify the level of DIIFERING that will be used when the program simulates a range of colors or grayscales on the display screen through the illumination of the display screen's pixels. For black and white displays this can be fairly easily understood in terms of the numbers of pixels that are processed in a group to create various levels of gray. But, it is more difficult to understand when dealing with color displays. In either case, the user can set this to values of: 0 , to use only the device's available colors (i.e., no mixing); 1, for one pixel per group; 2, for 4 pixels grouped 2 by 2; 3, for 16 pixels grouped 4 by 4; or 4, for 64
pixels grouped 8 by 8 . The user may need to experiment with the effect of various levels of dithering to yield the desired display results.

DEPPI CUENNG is an cotion in the SHADED_INAGE mema that can be turned ON and OFF, and set for the intensity decay of depth cueing. This can be used to adjust the contrast in color and intensity of the background relative to the model to enhance the appearance of three dimensions. This requires the specification of a background color other than black. This is dane with the COLOR OR_BACKGROUND Command presented in the main DISPLAY_OPIIONS mena, which is discussed later in this chapter.

I-DEAS offers several options in shading. This are specified by using the BASIC_SHADING, TEFMINAL_SHADING, and ADVANCED_SHADING Commands located in the SHADED_INAGE merm. Basic shading is done by the host computer on which I-DEAS is being run. This will produce high resolution shading at a relatively slow speed. Terminal shading is available only on same terminals (e.g., Tektronix 4129). When it is available, it is faster, relative to basic shading, by may be at lower resolution. Advanced shading techniques include: SHADOWS, REFLECIIONS, ANII ALTIASING, and PIXEL_FITIERING. The discussion of these techniques is outside the scope of this work. But, suffice it to say that I-DFAS is capable of producing computer generated images that can approach appearing to be photographs of actual objects. These techniques take a great amount of time to set up when atteapting to produce desired effects, and can consume large numbers of CPU hours of canputer time. But, because these advance shading techniques use ray tracing calculations, their use should be investigated by anyone that requires "industrial design" type displays. Also, scme advanced engineering
analyses involving radiation transfer (e.g., optics and heat transfer) have been able to take advantage of I-DEAS advanced shading techniques.

\section*{SURTFACE BOUNDARY DTSTTAYS}

The final display type that is available in the DISPIAY_OpIICNS memu creates SURFACE_BCUNDARY displays. These displays are similar to hidden line displays. Except, SURFACE BOUNDARY displays allow the lines that are hidden for view by the front faces of objects to be shown as dashed lines, or completely removed. In addition to the same EXBCUIE, SEF_AS GLOBAL, and SIATUS camands the other display options types provide, SURFACE BOUNDARY displays also provide for: HIDDEN LINE SIYLE; PRECISICN; ACCURACY_OF_CITPPING; HIDDEN_CHECK_INIERNAL; and COIOR_OPTIONS.

HIDDEN_LNE SIYIE provides a sub-menu which allow the user to specify if the hidden lines are to be REYOVEd, DASHED, or SOTID. If DASHED is desired, this meru also provides a LENGIH_DASFIDD command for use in specifying the length of the dashes. This is based on the dashes size in relation to the display screen. The screen's width is considered to be 10 units wide. The LDNGIH_DASHED coumand asks the user to specify the size of the dashes and the space between dashes, with an initial default value of 0.1 set for each.

The PRECISION command in the SURFACE_BOUNDARY display meru provides the user with the options to turn "precision" and SIHHOUEITE_ADUUSI_SW, ON and OFF. When precision is ON, surface boundary displays will be based on the precise (rational B-spline) surfaces intersections. When it is OFF, only the facet edges are displayed. Silhouette lines are view dependent lines. They are the lines that are displayed at the edge
of curved surfaces when only part of the surface is visible fram the current view point (e.g., the lines shown at the sides of a cylinder). This is set to ON by default, and is necessary for accurate data transfers of view-dependent displays mede to I-DEAS DRAFITNG and to IGES formatted output files. But, this requires additional ocmputation time, and if this level of accuracy is not necessary, turning the SIIHOUHPYEADJUST_SN OFF will speed up canputer response time. The PRBCTSION memu also provides an option for specifying the CURVE_SMOONHNESS, when precision is turned ON. This controls the number of line segments that are used to display each precise (non-uniform rational B-spline)
surface. The default is for each facet of the model to be replaced with four (4) line segments. With this command, the user may specify any number between 0 and 100.

The SURFACE BOLNDARY DISPLAY OPTION'S AOCURACY OF CCIPPPING COMmand gives the user to choice between SCREFN_DISPLAY, PICIURE_FIIE, and IGES_OUNPUT as the basic levels for accuracy in computation of the visibility of points. SCREEN_DISPLAY will cause subsequent surface bourdary displays to be clipped to within one (1) pixel. If PICIURE_FIIE is specified, the user will be asked how may times the image will be enlarged (e.g., for plotting). I-DEAS will then divide 1 by this number to determine the tolerance for clipping. Finally, if the user chooses IGES_OUIPUT, for writing view-dependent displays out in IGES format, I-DEAS will ask the user for the clipping tolerance that is to be used. This should be as small practical, and is input in the active model units (i.e., if the active units are "IN", then 0.001 is a 0.001 " tolerance).

The HIDDIN_CHECK_INIERVAL can be used to subdivide the object's edges in ocder to detect small edges that should be hidden from view. The need for this options arises in cases where large simple surface lie in front of small details that should be hidden from view. Because of the was I-DFAS process hidden line displays, it may be possible that when the large surfaces vertices, and equally spaced points in between are established for deleting hidden lines, all of these points may not detect the small details. The check interval is entered in current model units. This allows the user to specify its value such that small details of known size can be used as the basis for setting a small enough check interval to be sure they will not be missed.

The last SURFACE BOUNDARY display option is the COLOR_OPIIONS. This allows the display to be proctuced using either the OBJECT_COLCR or the SHADED_OVERLAY_COLOR.

\section*{GFNERAL DTSPRAY OPTTONS}

The DISPLAY OPIIONS merua provides several other options and sub-menus in addition to the four major display types.

Several of these qptions involve toggle switches. The ENIITIES_SW sub-menn provides the user to with toggle switches used to turn the display of working sets, profiles, skin groups, and systems ON and OFF for simultaneous display with solid models. The TASK DISPIAYS display options sub-manu is very similar. It provides toggle switches for the display of objects, working sets, profiles, skin groups, systens, and components tasks on the same display screen. It also has a SIAtus command which lists the ON/OFF status of each of these switches. The DISPLAY_OPIIONS LABEL SWS sub-ment provides CN/OFF switches far the
display of labels placed on points, facets, surfaces, and bodies. It also provides a SIZE command used to specify the size of these labels, and a SIXAtus command for listing the label switches status. Toggle switches are also provided in the DISPLAY OPIIONS VIENPCRI sub-menu. These switches allow the user to turn CN and OFF the display of: the \(X\), Y, \(Z\), triad; the \(X\) at the origin of the model space; the viewport's outline; the viewport's label (number). This meru also provides a LOCK_SW with can be used to "lock" a viewport. This prevents the contents of the viewport fram being modified when it is locked. A similar command is provided, call PICKABIITYY. When this switch is OFF, the program will not offer the ability to pick entities with the screen cursor in subsequent command operations.

The DISPLAY OPIICNS memu provides a RESET Command which can be used to reset all of the all of the display option parameters to the values set when a new model file is created.

The DISPLAY_OPIICNS mend provides A COLOR_OF_BACXEPCUND Comand, which can be used to change the default background color of black to any other standard 0 r user created color. A black background often yields the highest contrast between entities being displayed on the graphics screen. Also, a black background will allow plots to be produced using no ink for the backoground, because white will be substituted for black, requiring no color on white paper. But, if the goal is to produce graphics displays for viewing on the display screen alone, or for photographs of the screan, other background colors may be desirable. Some care must be taken in choosing the background color. Because, the colors of the menus will not be changed, and they can become inpossible to see on some beckogrounds.

The DISPLAY OPIICNS menu also provides the same PALEITE Color optians sub-menul that is provided in the SHADED_INACE meru. These commands are identical to those that were discussed along with the shaded image commands.

The AFFECIED_VIENPORIS Command in the DISPLAY_OPIIONS menu is used when multiple viewports are active on the display screen. It is used to specify which viewport will be affected by changes in the display options. When multiple viewponts exist, this can be used to specify either WORKING_VIEWPORI_ONLY or PICK_VIEWPORT. IF PICK VIENPORT is specified, each time a display option is executed, the program will prompt the used to pick the viewport to be affected. If only ane viewport exists, of if WORKING_VIFNPORT_ONLY is specified, only ane viewport will be affected by subsequent display option changes.

The DISPLAY_OPIIONS manu presents four display option management commands. CURRENT_DO is used, like the GET Command for entities, to specify which of the stored display options is to be made current. If multiple viewports are active, the user will be prampted to pick the viewport(s) in for which this display option is to be made active. This allows a different display option to be applied in each viewport. The SIORE command is used to store the arrent display options as a store configuration for latter recall and use. The MANAGE command calls up the standard I-DEAS manage mernu, which allows the user to DETEIE, IIST, RENME, COPY, and list the DIRECICRY of all stored display options. It also allows the user to change the OLD STACK_LENGIH. This will automatically store display options as OID1, OLD2, etc., if set to a value greater than zero, in the event that they have not been stored, and are about to be destroyed by a coumand (e.g., CURRENT_DO).

\section*{SPECTAL DTSPLAY_OPTTONS OPERRTICNS}

The DISPLAY_OPIICNS merna contains a sub-meral called SPECTAL_OPERAIIONS. This meru contains presents that allow the user to specify several operations that are available on selected terminals only.

The BLANKING_SN is a switch that can be used on all terminals. It allows the user to turn blanking OFF with a single command. This will cause all blanked entities in the carrent storage bin to be make visible in subsequent displays. When it is turned ON, normal blanking will be followed (i.e., blanked entities will be invisible).

If the terminal being used offers the ability to manipulate the view locally, the DYNAMIC_VIENSN can be turned an to enable this capability. If the terminal being used does not support dynamic viewing, and this command is used, the program will notify the user that this not possible. But, when this is available (e.g., on Tektronix 4129 terminals) it can be used to manipulate the views much more rapidly than when done by the main CFU (although at some what lower resolution). The DUNAMIC ORIENIAITON_SW is a similar ON/OFF toggle ewitch for dynamic orientation.

The LOCAL SHADING_SN can be described in much the same way as the DYNAMIC_VIEN_SN. On scme temminals, like a Tektronix 4129, the terminal is capable of performing the shaded image calculations. This, again at slightly lower resolution, can produce shaded images more rapidly that the main CPU. But, the real power of a terminal with local graphics display and shading capabilities is when these two special cperations are used together. This will allow objects to be shaded in one orientation, and then viewed from another direction, and the object will automatically be displayed shaded in the new orientation.

The SPECIAL_OPERATIONS COmmand named TERNINAL_DISPLAY_ITST is used to turn ON and OFF the storage of the display list in intelligent graphics terminals' memory. This option can be turned OFF if the terminal's memory capacity is exceeded.

The DISPLAY_OPIIONS, SPECIAL_OPERATICNS menu provides a FACFI_SHRNK_SN can be used to shrink all of an object's facets. This is like the element shrink cperation in Engineering Analysis in which the elements can be shrumk to excamine an FEA model of errors in element construction. In solid modeling, by shrinking an object's facets, the user can examine objects faces to the sure that no facers overlap. The facets are shrunk proportionally by the percentage set with the FACE_SHRINK_\% command in the DISPLAY_AITIRIBUIES meru.

The TRACE LINE SIYLE Coumand is used to specify either SOLID or DASHED trace line styles. The author was not able to determine which display cptions require trace lines, and was further confused by the fact that the opposite style was listed from that which was specified with this cammand when the SPDCIIL OPERAITONS STAIUS Command was executed. If a user is interested in using traces lines, this would require further investigation.

The special operations menu allows the user to request EVALUAIEDSURFACFS_DISPlays of the carrent object. These produces displays showing lines at constant parametric intervals along the object's precise surfaces. The lines displayed are parallel to the sides of each surfaces edges. The user can control the number of lines drawn across each precise surface with the DISPLAY ITNES Ccumand, and the number of line segments used to depict each display line, or arve, is controlled by the INCREMRNT command. This display option can be SEITAS_GOBAL.

The final SPECTAL OPERATION presented in this mera is use to display the CONIROL_NET. The control net is used by the program to mathematically control the ehape of an object's precise surfaces.

\section*{DISPRAY ATIRTEUTYS}

In I-DEAS Rev. 4.1, the DISPLAY_AITRIBUIES merua contains commands used to control the parameters that affect the aqpearance of objects displayed on the graphic screen. In Rev. V, these are located in the DISPLAY_OPIIONS, SURFACE APPEARANCE menu.

The COLOR_OF_OBJECT command can be used to change the color of the current object. The user can specify any stored color by mane of ramber. If the user want to see a list of the available colors, a "?" can be entered to dieplay the color DIRECIORY The default color will be the object's current color. This can be useful if several objects have been used to construct the current object using Boolean operations, which has resulted in the object having surface colocs.

The PALEHIE camand presented in the DISPLAY_ATIRIBUIES menu is identical to that which was described earlier in this chapter along with the SHADED_MVAGES Coumands.

The SFADING TYPE is used to control the variation of colors, or shades, accoss surfaces when shaded images are processed. There are four shading types offered, they are: SMDOIH, FLAT, UNIFORM, and ONIINUOUS. The on-line help provided by I-DESS describes each of these levels of shading. But, experimentation with these options will mare easily show the user the best shading type for an given circumstance.

The RADIANI_LIGFIC Ccmmand presented in the DISPLAY_AITRIBUTES memu allows the user to specify the minimm amount of light that each surface
of an object will radiate when a shaded image is processed. This value will be added to the ambient light that has been set in the DISPLAY_OPIICNS meru. But, the values set for radiant light will be store with the surfaces of the current object. This allows the radiant light to vary between stored objects, while the ambient light affects any object displayed.

The DIFFUSE_LIGGI command is used to specify the amount of the diffuse light, light that comes from the light source(s), that the current object's surfaces will reflect. The intensity of lignt that the user will see is dependent on the angle at which the surfaces are viewed relative to the position of the light source(s).

The combined effects of two comnands, GLOSSINESS_(SPECULAR) and BRIGRINESS_(SPDCUIAR), Control the apparent shininess of objects when they are displayed as shaded images. The GLOSSINESS command is used to specify the "specular coefficient". Specular light is reflected off of an object without picking up the objects color, like a mirror's reflections. Glossiness controls how much the specular reflection spreads as it is reflected. The higher the value of the glossiness parameter, the closer the reflections come to being reflected in a single line. The ERIGFINESS command is used to eppecify, as a percentage, the amount of specular light the object will reflect.

The appearance of LINE and HIDDEN LINE displays are affected by the angular value set with the FEATURE ANCTE command, when the FEATURE LINE SN is twrned ON. This parameter is used by the program to determine which facets' edges are to be display. The edges between separate surfaces are always show. But, the edges of facets that make up a singe surface will only be shown if the angle between the planes of
adjacent facets is greater than the FEATURE ANCLE specified. The default angle is \(30^{\circ}\), which will show no facets around a cylinder, because their coumon angle is \(22.5^{\circ}\).

I-DEAS offers the capability of displaying objects in shaded form which are traneparent, allowing other objects to be seen through them. This is controlled by the value stored for each object's TRANSPARENCY_\%, in the DISPLAY_ATIRIBUIES memu; and by tuming ON the TRANSPARENCY_SN in the DISPLAY_OPTICNS, SHADED_INAGE meru.

A similar effect to transparent objects is provided by turning the SHADED_INAGE PRECEDENCE_SN ON, and storing a PRECEDENCE_\% DISPLAY_ATIRIBUIE for each object. This does not actually make objects transparent. It make the objects appear in various degrees of visibility. They will appear in order from highest to lowest visibility based on their percentage precedence. Objects which are in front of other objects will block the view of the objects behind them. But, objects with higher precedence will appear brighter. This can be used to yield an increased sense of three dimensional depth to shaded images procurced of multiple objects.

The DISPLAY AIIRIEUIE mern provides three command that can be used to select bodies and surfaces from those displayed to and place them into a list of entities which can then be operated on with subsequent display attribute commands (e.g. blanking, and making attribute changes). This list will remain active until it is replaced by a new list, or until a non-DISPIAY ATIRTBUIE command is exscuted. These coumands include BLANK SURFACE/BODY, BODY_SELECT, and SURFACE_SETECT.

\section*{PTCIURE FITES}

One of the powerful features offered by the I-DFAS program is the creation of "picture files". These are used to store display images in memory disk files for future display. This allows the user to setup and create display images, store them and them call them up in subsequent interactive sessions. When the images are recalled, no computer computations are required, and they will be displayed are quickly as the terminal and the host computer can transfer the data to the display screen. This allows the user to prepare images for review by others, at a later time, and to display them at a faster rate.

This also allows a user to create images on terminal, and them to display them on another terminal. This might be necessary if a color graphics copier is available only on one terminal for procucing (paper) hard copies of the images. Or, this might be desirable if most work is done on an inexpensive terminals or PCs with low graphics resolutions, and a higher resolution graphics terminal is available for displaying images.

Three picture FIIE_TYPEs can be created: Replay, Binary, and Formatted. Replay files can only be replayed on the same terminal type that was used to create them. But, they are the smallest of the three file types, and can be redisplayed the fastest. Binary files can be replayed on other terminal types than just the terminal used to create them. But, they are larger than, and slower than Replay files. Finally, Formatted files are the largest, and slowest of the three types. But, not only can they be redisplayed on any valid terminal type, they can also then as the input to drive a plotter. This requires an external progrom to act as a plot driver.

WRIIE_FIIE_SN is the toggle switch for turning the creation of picture files aN and OFF. Thas, if the user wishes to create a picture file, after specifying the desired FIIE_TYPE, this switch is used to turn this feature ON. Then, any subsequent displays exscuted will cause the program to prompt the user for a file name in which the picture file is to be stored. The AUIO_NAME SN ccumand can be used to turn on a feature which will prompt the user for a base name with which subsequent picture file will be name autcmatically. If this is used, and the base name entered is "PICIURE", the files will be named PICIURE1, PICIURE2, etc. If a name is entered, either mamally or automatically, which already exists, the user will be asked if it should be over written. If the user answers NO, the program will ask for another name. If automatic naming is in effect, the next name in the sequence will be tried. The default name is always NONE, which will yield no picture file. once the desired picture files have been created, the WRITE_FILESN can then be used to turn this feature OFF. This will allow execution of displays being prcmpted for picture file names.

Once picture files have been created, they can be redisplayed by using the DISPLAY_PICIURE_FIEE command. This will prompt the user for the name of the file which is to be displayed. If picture files have been created in the current I-DEAS session, the default file will be the last file created during the session. The user can also choose the DIPbCIORY option, help in the selection of file names from those stored during the session. This requires the user to turn file tracking on with the ON_IRACKING command presented in the menu of DIRECIORY options.

\section*{APPENDIX XI}

CAD DRAFITNG OPERATIONS

\begin{abstract}
INTRODUCITON
As discussed in Chapter 2, this work was done with I-DEAS REV. 4.1. But, as of this writing, GEA had installed I-DEAS REV. V. The DRAFITNG Family has had at least one major change introduced between these two revisions. The version that will be discussed here requires that the geametry created in Solid Modeling be transferred into DRAFITNG for the creation of CAD drawings based on solid models. If any changes are made to the solid models after drawings have been created, the user must manually update the drawings with the commands provided in DRAFITNG. Or, the geametry must be deleted from the drawings, and then the new gecmetry must be transferred into the drawings, and re-detailed. But, with Rev. V, I-DEAS provides the capability for automatically incorporating the solid models' changes into the drawings. This requires study of the Rev. V system. But, this change appears to be very useful, and should be investigated by future users.
\end{abstract}

\section*{GRAPFTCS TEERYMNAL_RDOUUPFYMENAS}

I-DEAS DRAFTING requires the use of a mouse or tablet (even though the Tektronix terminal may have a joy pad, that works in all other I-DEAS Families). But, if other I-DEAS Families are used before entering DRAFIING, a non-mouse code can be used, and the user will be prompted to change the code when entering DRAFITNG. Therefore, if Solid Modeling is used first, T4107 might be used, and then switched to T4207A when entering DRAFTING.

\section*{INTYREACTNG_WITH I-DEAS DRAFTTNG}

The interface to DRAFIING is memu-drive, similar to the mend system used in the other I-DEAS Families and Moculles. But, unlike the other Families' menus, which scroll vertically over the graphics display, DRAFITNG's manus are confined to a short box that spans the width of the bottom of the display screen, and the graphics views are displayed in a large area above the menus (see Figure 61.). Also, rather than scrolling, DRAFIING's merus "pop" into the display's menu box, as the user picks various commands. The meru box is subdivided into three smaller bosses, containing sub-menus. The bottom, single text line, sub-mera box is the Global Menu Area. The largest box is the Prompt Area, or coumand menu area, in which the various levels of command menus will be displayed. During the execution of most commands, this large menu box will be divided, creating an Option or Selection Area at the right side of the screen. This sub-box will present the options that become available during the execution of DRAFITIN's commands.

FIGURE 61 . - I-DEAS DRAFTING DISPLAY

In DRAFIING, most commands can be exscuted by typing in the appocpriate memonic identifying the desired coumand. But, unlike discoussed in Chapter 2 for the other I-DFAS Families, the coumands executed in DRAFTTNG are generally "picked" or "digitized". This is done using the terminal's digitizer tablet or mouse to move the screen cursor to point at the desired selection, and then pressing the appropriate key to " \(D I G\) " (digitize) the selection.

In addition to CDIG>ing commands, the DRAFIING system often requires the user to respond with the <REIURND key, and to abort a command's execution, the user must use the < FSO (escape) key. Because many I-DEAS users will be using a Tektronix terminal with a Tektronix digitizer table that users a four key "puck" to move the screen cursor, DRAFIING provides the convenience of programming three of the puck's keys to serve as <DIG>, <REHURN>, and <ESC> keys.

\section*{DRAFITNG COYMANDS}

DRAFIING's commands are so similar to those that are discussed in APPENDICES VIII, IX, and X, that few need to be described here. But, there are a few very powerful capabilities that should be mentioned. At most steps in the execution of DRAFITNG commands, and at any level within its meru structure, the user can pick the options shown in the Global merm area. This allows the user to change views, use an on screen calculator, change defaults, and access the MAD-MENU, etc. without terminating a command, or actually returning to the MAIN-MENU. Once the desired functions are completed, <ESC> can be used to return to the same step in a coumand's excecution, or position in the menu structure.

If the user enters an <ESC during the selection process while
esescuting a command, the selection process is terminated, and the command is exscuted. For example, if a user is selecting entities for deletion and uses <ESC after having <DIGsed the wrong entity, that entity will be deleted. But, DRAFIING provides an option that make it more forgiving of mistakes like this than the other I-DEAS Families do. The UNDO coumand located in the Global Merua area allows the user to undo the last command's effects after it has been terminated. This coumand can also be used repeatedly to undo several of the last commands exscuted. DRAFIING even allows the user to undo the effects of unDO. This is done by pressing <CONLROL> together with the " \(R\) " key. Thus, UNDO allows users to experiment with DRAFIING's commands, without risking making mistakes that become permanent, freeing them from constantly referring to a user's manual.

\section*{VIEN COYYRNDS}

The VIEN commands used in DRAFTING operate like they do in the other I-DEAS Families. Except a few are specific to DRAFIING. These include ZOOX-ALL, which fills the entire graphics area with the drawing viewport (i.e., the entire drawing). The ZOCM-VIEW command is used to fill the graphics area with one of the drawing's viewports. The ZOOM-WINDOW command enlarges a epecified portion of the visible part of the drawing to fill the graphics area. The ZOOM-IN and zoox-OUT commands work like the other I-DEAS Families' MAGNIFY coumand. But, rather than using a decimal fraction to specify a magnification that will shrink the carcent display, making more of the drawing visible, the ZOOM-OUT coumand is used to do this with values greater than 1. Therefore, in DRAFITNG, zOOM-OUF with a factor of 2, is equivalent to
using a magnification factor of .5 in Solid Modeling. DRAFNING also has an added PAN command. This can be used to maintain the current level of magnification, and to move the drawing across the graphics display area, by specifying two screen locations from which to pan from and to.

\section*{YLPAROFIS}

I-DEAS DRAFITNG utilizes multiple viewports on a drawing to separate the entities created for each view of the geometry. When a drawing size is specified, one "drawing viewport" is automatically created, which covers the drawing's entire "sheet of paper". But, the user should create smaller viewports on this overall viewport into which views, and notes, etc. can be created. When entities are created in DRAFIING they are placed in the "working viemport". The hORK-VIENRORT command located in the MARN-MINU is used to pick the current working viewport.

In order to see the bonders of viewports, the commands located in the DISPLAY-OPIIONS merm can be used to turn ON and Off the boarders, and their names. The current working viewport's boarder will be shown with a different line style then the other viemport's. Thus, when the boarders are visible, the user can see which viewport is current.

\section*{CTASSTES, COIORS and EROUPS}
tike any good CAD pacikage, DPAFIING provides multiple "classes" in which entities can be created. The user can separated different types of entities, dimensions, notes, etc. into different classes, and to selectively make classes visible or invisible. DRAFIING provides 256 transparent classes from which to choose. Any new entities created are
placed on the "current" \(\alpha\) active class. This is determined by the DEFAJITr, CLASS comand. The visibility of a class is determined by CIASS command located in the DISPLAY-OPIIONS memu.

In addition to using classes to segregate information placed on a drawing, different colors can be used. Unlike some CAD software, I-DEAS DRAFTING allows the use of multiple colors on any given class. It also allows the user to turn CN and OFF the visibility of colors on all visible classes. These options are controlled by the DEFAUTr, COLOR, and DISPLAX-OPIIONS, COIOR commands like those described above for classes.

DRAFITNG also allows entities to be created with a GROUP-NRME attached to them. This also groups of entities to be specified when making selections from within DRAFIING commands.

PREPARAUTION OF SOTTD YODETS FOR TRANSFER TO DRAFITMG
Because this thesis used the solid models' gecmetry for the creation of CAD drawings, some preparation of the solids in Solid Modeling was needed before they were transferred into DRAFITNG. This preparation involves setting up the views of the geanetry that are desired in the drawings, and setting the display parameters desired for these views. The DRAFIING gystem is 2D. The geametry transferred for creation of drawings is "flattened" onto a 2D plane, and therefore, it can no langer be manipulated in three dimensions. Thus, the views must the prepared to appear in the standard drafting style. This generally requires top, front, side, and iscmetric views of the parts. In these views, any hidden lines are usually shown as dashed lines, except for in iscmetric views, in which they are usually removed from view. I-DEAS

Solid Modeling allows the user to use the software to make this happen, rather then transferring all lines into DRAFITNG as solid lines, and then manually changing the hidden lines to dashed or removed lines.

\section*{SEHVP OF VIFNS}

The views can be setup ane at a time, using a single viewport an the graphics screen. But, a more efficient method is to utilize I-DEAS multiple viewport capabilities to prepare all views of a camplete solid on the screen simultaneously. This allows them all to be transferred to DRAFIING together. Then if any section views are needed, they can be setup and transferred separately.

Solid Modeling's multiple viewport options are discussed in Chapter 2. Multiple viewports are setup with the VIEN, LAYOUT command. Four layouts are provided by I-DEAS, containing from one to four viewports. The user can also create custom layouts.

For this thesis, all four standard drafting views were used in creating CAD drawings of the new surface unit support's two support pieces, its center trim, and the assembly of the complete support. Thus, the I-DEAS standard layout named "FOUR, EQUAL SIZED [VIENPORIS]" was used when setting up the views for transfer of geometry to DRAFITNG. To cause I-DEAS to prompt the user to select the affected viewport for use with any subsequent display option or view changes, the VIEN, AFFECIED_VIENPORIS, PICK_VIENPORT COmand was executed.

After the four viewport display layout was established, each of the views were created. This was done by applying the VIEN, EYE DIRECIICN and ROIATE ABOUI_MODEL commands to establish top, front, side, and isometric viewports. After each viewport's view was setup as desired,
they were stored with the VIEN, SIORE ccumand using these four names, for futare use.

\section*{SHIUP OF DISPTAY OPITCNS}

After the views were setup, the next step in preparing the solid model geometry for transfer to DRAFITNG was to setup the Display Options that are needed to produce the desired hidden line effects. This is accomplished by using the DISPLAY_OPIIONS, SURFACE BOUNDARY_IMAGE coumands. These are discussed in Appendix X. But, the specific parameters that were set, were done by: 1) setting the HIDDEN_ITNESTYLE to DASHED for all four viewports, and then to REMOVED for the iscmetric viewport; and then, 2) turning the FRECISION, SIIFOUEITE-ADUUST_SW, ON for all viewports.

\section*{WRITING OUT TRANSEFER FTIES}

The transfer to DRAFIING is made by writing IGRS formatted files out of Solid Modeling, and then reading then into drawings in DRAFIING. This is done ance the viewports and display options are setup as desired. It is accomplished by using the MANAGE, WRITE, DRAFTING command. This command proupts the user for specification of: the arve error factor; IGES file units (INCHES); file identification text, optional (20 lines of 72 characters maximm); and the IGES file name. If the use specifies a new file name, I-DEAS will ask if it is nOK to write new file"?. But, if the user enters an existing file's name, I-DFAS will ask if it is "CR to overwrite existing file?". It will also ask if it "OK to display?". If the user answers YES, I-DEAS will then ask if it is "OR to erase screen?". This allows the user to preview the
displays that are written into the IGES files. This enables the user to see if the hidden line style, and level of precession looks ok. Thus, if the displays look unacceptable, the user may be saved from spending time reading a bad IGES file into DRAFITNG.

\section*{ERBPARTNG DRAFITNG DRAMTNG TO RDCETVFD GDONIFIRY TRANSFER}

When DRAFITING is entersed, the user is asked to "Enter drawing name or select new drawing size:". When preparing a new drawing for receipt of the geametry from Solid Modeling, the user will specify a drawing size at this point. The drawing size options are: the ANSI Standard English drawing sizes: A, B, C, D, and E; standard Metric drawing sizes: A4, A3, A2, A1, and A0; and Explucri. If an English drawing size is used all dimensions entered will be in inches (e.g., 3 used as the value for a line's length will be 3.0 inches lang). But, if a Metric size is used, the drawing's size will be the same as the English size. But, when dimensions are read in fram Solid Modeling transfer files, or when geametry is created from within DRAFIING, they will be in millimeters. The user must use this cautiously, because once millimeter have been established, they can not (easily) be changed to inches. Actually, the drawing viewports can be SCALFD back into inches. But, the system will continue to think millimeters are being used. The EXPLICIT option allows the user to directly specify a custom drawing size by entering its boarders' dimensions in inches.

For this thesis, all four of the drawings created were made "D-size". This large drawing size was not actually needed for all of these drawings. But, as will be discussed later, only a D-sized GFA drawing format (i.e., boarder, title block, revision blocks, etc. on the

CAD screen, same as on drafting paper) was available for use in I-DEAS DRAFITING at the time this work was done. So, by specifying D-sized drawings, no drawing format had to be created, and the drawings could easily be plotted, or duplicated in smaller sizes using the equipment available at GEA if desired.

Once a new drawing size is epecified, DRAFITNG sets up the display screen with a "drawing viewport" that is proportional the size of the drafting paper size that was specified. The next step the user must complete in preparing to read IGES files into a drawing is to setup viewports on the drawing viewport into which the transfer files' views can be read.

DRAFIING's viewports can be modified once they are established. But, it is helpful if they are setup as near to the ideal as possible up front, to avoid additional work later. Because the drawing format requires additional time to display each time different views of the drawing are displayed, generally it will save the user time if the drawing format is not added to the CAD drawing until one of the last steps in creating drawings. But, this means that the user must visualize were the drawing format will require space on the overall drawing viewport, as well as were the user will need to place notes, etc., so that no viewports will be setup for the gecmetry and dimensions etc. in these areas. An alternative to this, is to bring the drawing format into the drawing, on a class by itself, and then making that class invisible. Or, the drawing format's entities can be BLANKED.

The vienports are setup with the VIFNPORT, DEFTNE_VIENPORT Command. This prompts the user to define the view's boarders. This is usually done by picking diagonal corners for the viewport using the screen

Cursor. But, this command also presents other options in the sub-meru that is display for use during the ensecution of this command. Once the boarders are defined, this command prompts the user to specify the view's origin. Again this is usually done by picicing a location on the screen with the cursor. Once the origin is established for a viewport, the user is asked for a "view angle" for the viewport. This beccmes a label that can be displayed in the corner of the viewport. The user is provided with the following view angles from which to choose: TOP, ISCM, LEFFT, FRONT, RIGHT, and BACK. Having made this last selection, the execution of this command is terminated. If additional viewports are to be defined, this procecure must be repeated.

After the geometry viewports have been established on the drawing viewport, their boarders and origins can be aligned to present the gecuetry in the standard drafting style in which the top, front, and side views are projections of ane another. This is accouplished with the use of the VIENPORT, ALIGN, MATCH-BOPDER, and ALIGN-CRIGIN Commands. The RATCH-BOARDER Command allows the user to select the viewport whose boarders are to be changed, and the viewport whose boarders are to be matched. The user then specifies whether the boarders are to be matched HORIZONIALLY (moving the horizontal boarders vertically), or VERITCALIY (moving the vertical boarciers horizontally). The ALIGN-ORIGIN command works in much the same way, aligning one viewport's origin with another's, either VErrICAILY or HCRIZONTALLY. But, this is generally done after the geametry has been read into them, so that it can be best viemed.

\section*{SICRING DRAFYTNG DRAMTAKS}

DRAFIMNG operates like all other I-DEAS Families. All work is done with a "current" (temporary) drawing that exists only in computer RAM. It is not saved permanently in a disk file unless the user comands it to be written to a file. Thus, the veer should SAVE the current drawing, before retrieving another drawing, or before leaving DRAFITNG, if he want to eave the canrent drawing.

Once the basic drawing has been prepared, it is a good idea to save the drawing at this point. In fact, if several drawings are going to be created for similar parts (e.g., the two pieces of the new support design for this thesis), by saving the drawing at this point, a generic drawing can be setup that can be saved under two names, one for the specific part that is being detailed, and one for use with other parts. This can also be done by coupleting one drawing, and saving it in two files, and then deleting the geametry fram one and transferring in another part's geametry. This will require the user to create the crawing format, notes, tolerances, signature blocks, etc. only once, eaving a lot of time. Drawings are saved with the SAVE command located in DRAFTING's MATN-MENU.

Once drawings have been created in DRAFIING, they can be gotten from the user's disk file directories. When entering DRAFITNG this is done with the GBI-DRAWING-FROH-FILE option when asked to "Enter orawing name or select new chrawing size:". If the user wants to change to another drawing from within DRAFIING, the FILE/EXIT merals GEITDRANING command is used.

READTMG TGE TRANSFFR FITES_TNHO DRAEIUNG
When the user has established a drawing's viewports as desired, the geometry that was written out from Solid Modeling can then be read into DRAFITNG. This is done with the FIIE/EXIT, FRCN-GECMOD coumand. When this command is invoked, the user is asked for the Solid Mocieling transfer file which is to be read. Like all DRAFIING commands which require alphammeric input, DRAFTING presents a set of the alphanumeric characters along with REF and ESC in the Options memu area. This allows the user to use the mouse or tablet to drive the screen cursor to <DIG> the characters. This is fairly tedious. So, the users can use the keyboard to type in the file name. The full name, including the extension is required (e.g., FILE. IGE) .
ance the file name is entered, the user is prompted to specify the viemports into which each of the views in the transfer file are to be placed. This can be done by \(\langle D I G\) ing each of the viesports, in order of the Solid Modeling viewport numbers, to place the geanetry into the corresponding DRAFIING viewports into which the geometry is to be placed. The user must be careful to ©IGs only once in each viemport. Otherwise several of the Solid Modeling views may be placed together in the same viewport. If this happens, the user will have to call up the empty drawing again, or deleted the geometry in the viewports, and then transfer the gecmetry in again.

Once the gecmetry have been transferred into the drawing (and the drawing has been SAVEd, if it is acceptable) the user may need to align the origins of the viewports are described previously.

\section*{DHAATITMG DRAWINES}

After a drawing has been setup and its geometry has been transferred in from Solid Modeling, DRAFIING's coumands to detail the drawing. The users can easily apply DRAFITNG's menu driven entity creating, dimensioning, crosshatching, and note and symbol creation commands to complete the creating of a drafting style engineering CAD drawing. The majority of this commands are very easy to use, and are located by selecting conmand merus from DRAFITNG's MAIN-NENU.

\section*{GEONEITRY CREPTTION}

Any additional geametry which the user must add, or create from scratch if desired, can be created by picking one of the following create command menus: POINIS, LINES, MORE-INNES, CURVES, FIITET, ARCS, and CIRCLE.

The user must remember to establish the desired viemport as current with the WORK-VIEMPORI command in order to create any entities in a specific viemport. If this is not done, the entities created will most likely end up in the overall drawing viewport. This may appear ok, but if the user tries to MDDIFY, CRIENT, or change their AIIRIBUIES, problems will arise. The user must also remember to utilize the DEFAUITS CCmmand if CIASSES, COIORS and GROUPS are to be used to segregate the entities created.

Very few of the create commands require any description do to their straight forward operation. But, first time and infrequent DRAFTING users may have difficulty locating the DRAFITING-LINES commands. These are found by selecting MORE-INNES, followed by DRAFIING-ITNES. This will yield an options menu which allows the user to create: CIRCLE-

CENIERS; CENIER ITNEs; CUI-PLANE lines, with either EVEN or UNEVEN-SPACNNG; and LONG-EREAK-MARK lines.

DRAFING provides all of the functions that can be acocuplish on a drawing boand with a drafting machine and standard drafting tools, like a compass, ruler, templates, and an eraser.

The POINIS command allows users to create points at explicit point locations. This can be done by specifying absolute coordinates (X and Y) for the points. DRAFITNG also allows the points to be created at locations relative to REFerence points, either with incremental coordinates (IX and IY), or in polar coordinates (ING and PA).

POINIS also allows the user to create points at implicit point locations. These include ©IGing: a screen location (DIG); the END of an existing entity; the center of a line or arc (CIR); and existing point (PNI); a point on an existing line or arc (FNI-CN); at the intersection of and existing line or arc with another line or arc (INI-OF); and by interpolation between two existing or implied points, or at a distance along a line or arc, fram the end picked (\%OF). Each of these point specification options is also available when specifying implicit points for the creation of other entity types from within the other creation commands.

The general LINES creation command allow the user to create lines fram one point (either explicit or implicit) to another. The command allows multiple lines to be created consecutively, each starting at the end point of the previouss line. The command continues until it is terminated with an <BSC>, or a <REIURN> to the MAMN-MIRNU.

With MORE-ITNES commands, the user can create HORIZONIAL, VERIICAL, and ANGEED-LINES. Lines can be created PARallel and PERPendicular to

Other lines. Also, lines can be created that are TANgent to: two arcs or circles (TAN/TMN); a point and an arc or circle (TAN/POINT); an arc or circle at an angle (TRN/ANGE); an arc or circle and perpendicular to an existing line (TAN/PERP).

The CURVES mern provides create commands that are capable of producing: OFFSET-CURVES; MIMII-LINES; SLOTS; n-bided polygons inside an arc (POLYGON-IN-ARC); hex-heads besed on their center point and their bolt head size (HEX-HIEAD-BY-SIZE); hex-heads based on their center point and their bolt head's flat length per side (HEX-HEAD-BY-FIAT); GENERALETIIPSEs; curves fitted emoothly through any number of user selected points (B-SPLINE-CUIVE); n-sided polygons based on their center point and the ramber of sides (GENERAL-POLYGON); BOXES-BY-WIDIH/HET; and rectangles based on two diagonal corner points (BOXES-BY-TWO-POINIS). The SLOT command can be used to create slots of specified length, width, and placed at a specified angle. The resulting slots will have parallel sides with semicircles at the ends (their diameter being the slots' width).

The ARCS and CIRCIE commands provide several options when creating these entities. They can be based on radius or diameter dimensions, depending on whether the RADIUS or DIAMEIER command has been specified (which affects all subsequent create commands). The RADIUS and DIAMEIER commands also allow the user to enter the dimension directly; or, to select an existing arc's dimension (EXISITNG-RAD(DIA)), to add to add to an existing arc's dimension (RAD(DIA)-PLUS-INC). Arcs and circles can be based on center (CIR) points, or through three points (PNI). ARCS can be created in either clockwise (CIW) or counterclockwise (CIW) directions, depending on: picking either CTW or OCIW; the center point
selected; or the sign of the angle specified (which affects all subsequant create commands). The CIRCIE commands allow the user to create circles that are tangent to another existing entity. Multiple circles can be created concentrically around a single center point with different edge points (CENTER/POINIS(S)); or with the same edge point (from the first circle created) around different center points (CENIER(S)/POINT). Similar commands can be used to using RADII or DIAMEIERS in place of the edge points. Circles can also be INSCRIBED-IN-THREWE-INNES.

Most create ccmmands can be used repeatedly after the execution of their operation is complete, without the need for exscuting the command again. This is done by entering a <REIURN> when a commands operation is finished. If the user wants to terminate a command, an <ESC> should be entered. This will return the user to that create comand's mern. To return to the main mernu, the user must select MANN-MINU.

\section*{AMNOTATING DRAMINGS}

DRAFITING has three separate merus that are accessed from the MARN-MDNU for the annotation of drawings. These are: DIMIENSION, NOIE, and CROSSHRTCH. The DIYIRNSION mern contains commands that allow the user to place dimension on a drawing's geometry using standard drafting practices. DRAFIING provides a dynamic dimensioning system (which can be turned off if desired with the DYNAMIC-ON/OFF command). This allows the user to \(\langle\) DIG geametric locations between which dimension are desired, and the location in which the dimension should be placed. Then the program will display the resulting dimension. Until the user enters an <ESC 0 or <RBIURD is entered, the location of the dimension, and its parameters can be changed simply by <DIG>ing the new dimension location,
and selecting commands from the active options menu. Dimensions are created and stored as single entities with multiple parameters associated with each. In addition to allowing dimensions to be modified dynamically while they are being created, this also allows them to be changed at any time, with this same leval of flexibility. This is done with the EDIT-DDYENSICN command.

DRAFITMG provides DDFENSICN commands for the creation of ANGUAR, RADIAL, and DIANLFIRICAL dimensions. It also allows linear dimensions to be created horizontally (HCR-LTNEAR), vertically (VER-LINEAR), and between two points at any angle, displayed with their dimension lines shown parallel to the line between the points (PAR-INNEAR). Linear dimensions can be created by contirually selecting pairs of points (explicit or implicit), between which dimensions are to be placed. This is the case when the SIANDAPD command is in effect (default). The user can select one point to act as a datum, and then all other points that are to dimensioned from this point. This is the case when the DATUM command has been applied. Finally, when CHAINED has been used, after one dimension is set-up its end point becomes the start point the next dimension.

In addition to providing comands for the creation of dimensions, the DIVENSICN merdu also provides commands used to created, LABELS, BAIIONNS, and FEATURE_CNIROL-SYMBOLS. LABELS can be created with any desired text, with a leader and arrow pointing to any location an a drawing. If dynamic dimansioning is on, labels can be moved and modified just like any dimension. BALTOONS are similar to LABETS, except their teat is surrounded by a circle, and thair leads do not include arrow heads. I-DEAS DRAFIING pcovides three FEPIURE-CONIROL-

SYMBOLS sub-menus, which are: GEOVIHIRIC-TOLERANCES, DATUM-TARGEIS, and SURFACE-FTNISH-MARXS. Each of these up sub-memus contain commands that can be used to place a large number of predefined symbols at any desired locations within the WORK-vIENPORT.

The NOIE cammand allows DRAFIING's users to easily added notes, and titles, and general text anywhere desired in the active WORK-VIENPOFR. The NOIES Command provides an options mern which allow the user to control the HEIGHI, SIANT, justification (JUSIIFY), WIDIF-RAIIO, DONNSPACING, and TEXI-ANGLE for each note created. Once one line of a note is enter to the user satisfaction and the <REIURN> key is depressed, the program will place the note at that location. It will then drop the reference location down by the value of the DONN-SPACING parameter, and prompt the user for input of the note's next line of text. This process of defining, placing, and then entering <REIURN> to add additional lines will continue until the user issues an <ESO.

The CROSSFATCH Command can be used to crosghatch any areas on a drawing which are bounded completely by closed loops of curves. These areas can include moles" which are not to be crosshatched. DRAFIING provides standard crosshatch patterns for: IRON, SIEES, LEAD, ALIMINUM, GLASS/SLATE, FUBBER/PLASIIC, and ERASS/COPPER. The user can also create USER-DEFINED crosshatching patterns, including their angle, font, color spacing, and offset. The standard patterns can also be easily used with a REVERSE crosshatching angle, or user defined DISTANCE between its repeat patterns. Once the user has identified the pattern that is desired, an <ESC> is entered, and DRAFITNG will prompt the user to select the entities for the outer boundary and optional interior holes. The the boundaries have been identified, a <REIURN> will cause the
program to crosshatch area defined. If the results are unacoeptable, the user can use the UNDO command to erase the crosshatching, and then redefine the pattern and try again. Note that crosehatching works pouring paint into a container, if there are any breaks in the container (boundaries), the paint (crosshatching) will spill out! This can result in the entire WORK-VIFNPORT being crosehatched. Renember UND if this occurs.

\section*{CRFETMNG AND USTNG SYYROTS}

Symbols are collections of geometry and/or text which are stared together. They can be used repeatedly in the drawing in which they are created, and they can be written out to external files for use in other drawings. DRAFIING's symbol capabilities are accessed with the SYMBOL command. It presents a meru that allows the user to: CREATE-SYYBOLs; CREATE-INSIANCES of the symbols created; change-all-instances of a symbol; SIORE, REIRIEVE, and LIST symbols; and to "SMASH" symbols.

The CRFATE-SYMBOL Command asks the user to specify an alphammeric name for the symbol. It then prompts the user to select the entities that are to be included in the symbol. When the last entity has been picked, <REIUPN> is entered to terminate the selection process. Then the program asks the user to specify the location which is to be uses as the symbol's origin. Once a symbol is created, it can only be selected by its ocigin. Therefore, a permanent point or feature of the symbol should be specified as the symbol's origin. the entities selected in the creation of a symbol does not became an instance of the symbol. If the user wants to convert it to a symbol, it can be deleted, and then the symbol can be instanced at the same location.

Once symbols have been created or REIRIEvbd into a drawing file, they can be placed at any location in the work-viewpont desired through the use of the CREFIE-INSIFNCE Command. The user can use the conmands presented in this coumand's options mernu to set an angle and scale for the instances of the symbol, and to mirror the symbol across its \(\mathbf{X}\) or \(\mathbf{Y}\) axis (which is done before any scaling and rotation). Once these options have be set as desired, the user has two options for placing the symbol that is specified for instancing. With the ORIGINS(S) command the user can specify screen locations for the instances consecutively, by continuing to specify instance origin locations without entering a <REIURN, Once a <REIURA> is entered, the instances of the symbol will be created, placing the symbol's origin at the instance origins specified. If the user enters an <ESC before a <REIURND, the command's cperation is aborted without creating any instances. The other cption DRAFIING presents for the placement of symbols (if sumported by the terminal being used) is to DRAG-IO-ORIGIN. This allows the user to move a copy of the symbol around the drawing dynamically with the mouse or tablet. Once the symbol is located as desired, <REIURN> will cause an instance to be created at that location, and <ESC will abort the command's operation.

The CHANGE-ALI-INSIANCES command can be used to change the entities that comprise a symbol, and then replace all current instances of the old version of the instance with the new version. Other than the facts that this command requires the user to specify the name of an existing symbol, and that it repleces existing symbol instances, this coumand operates just like the CREAIE-SYMBOL conmand described above.

The STORE command is used to store symbols externally from the active drawing file. The REIRIEVE command is used to bxing symbols into the active drawing file which have been created and stored when they were created in other drawing files. The D-sized drawing format (FORMAT-D.), that was used for this thesis is a good example of a symbol that has been created and stored for use in other drawing files. Other examples of coumonly used symbols that the user might want to create and store are: "critical-to-quality" symbols; electrical schematic symbols, flow chart control symbols, ladder logic symbols, etc. Some of the mechanical engineering drawing type symbols have been provided by I-DEAS in the DIMENSICN, FEAIURE-CONIROL-SYMBOIS memu.

The SMMBOLS, SMASH command can be used to convert symbol instances back into individual entities for use as points, lines, carves, etc.

\section*{ADDING THE DRAMING FORMAT TO DRANINGS}

A D-sized drawing format had be created be GEA's CAD department for use in I-DEAS DRAFIING as a symbol. It contains the GEA drawing format used to add a title, drawing namber, signatures, revision marks, etc. to drawing created at GEA. To use this format for this thesis, the symbol file, named "Format-D." was copied into the diek directory in which the DRAFING drawings were being created for this thesis. Then the symbol was REIRIEVEd into each of the drawings' file, and then it was instanced into the main drawing viewport with the CREAIE-INSIPNCE Command. The figures, apparing later in this chapter, displaying the drawings created for this thesis show the inclusion of this drawing format.

\section*{TRANSFFPR FITES}

Gecmetry is transferred to Calma (or any other external CAD system) by writing out IGES formatted files. I-DEAS pacovides three types of IGES files fram which to choose. The first is a standard IGES file (IGES). The other two have been dofined specifically for use by: calma DEM Rev. 3.1.1 or higher or, CONFUIER VISION.

\section*{GRIMTNG OUT_TRANSFER FTHES FOR USE TN CATYA}

The transfer files are written up using the commands in Solid Modeling's MPNAGE, WRITE merm, which can be assessed by typing:
/INA W <REIURN〉.
Once the WRIIE merul has been accessed, the CALMA IGES command is selected (C).

There are four types of files that can be written out for use by Calma DOM. FACES EDGES can be written out resulting in a file containing lines that lay on the current object's facets, and no curves or surfaces are written. VIEW_DEPENDENT files can be written which will result in transferring the view dependent geonetry that are visible based on the current view and surface boundary display parameters. The geametry written out will look like a SURFACE_BOUNDARY_DISPLAY of the current abject (see Chapter VII). The WRIIE, CAINA_IGES coumand will also allow the user to select and write out IGES formatted files of any PROFILE stored in the current model file. The file type that is desired for transferring complete solid models geometry is named CURVES_AND/OR_SURFACES.

The CURVES_AND/OR_SURFACDs file type allows the user to write out the 3D aurves from the intersections of the arrent object's precise surfaces, and/or its surfaces themselves. If Calma DOM is going to be used to create Calma solid models, the sunfaces might be used. This has never been attempted by the author. But, if the geametry is being transferred for use in producing production engineering drawings only, the surfaces will not be used, and may actually cause problems for the CAD Deaigner. Therefore, when I-DEAS solid models are being transferred to GEA's CAD Department, only anyes should be transferred.

The specification of the desired entities for output are set with the use of the SEF IGES_PARAMEHERS (P) command. This allows the user to set the OUIPUT_GDOMEIRY to: CURVES, SURFACES, or BOIH_CURVES_AND_SURFACBs. The user must also specify the desired UNITS, which can be either INCHES or MITITMEIERS. The final IGES parameter that must be set is the CURVE ERROR_FACIOR. This factor can be set to any integer between 0 and 10, with the default being 5. Before issuing the ExpCUTE command, the user can use the SIAtus command to be sure that these parameters have be set to the desired values.

Once the user has issued an EXBCOUIE command to write out an IGES transfer file, I-DEAS will prompt the user for input of text for the start section of the file, if desired. Then the user is asked for the IGES file name (e.g., CIRHM.IGE) that is to be used. If no file exists with the name specified, the user will be asked if it is OK to write a new file. If a file already exists with the name specified, the user will be asked if it is OK to overwrite that file.

\section*{APPENDIX XII}

I-DEAS PREPROCESSING OPERATICNS

\section*{}

The I-DEAS Engineering Analysis Family contains commands which can be used to build and preform analyses on finite element, plastics mold filling and cooling, and frame models. For this thesis neither the plastic molding or the frame analysis Modules were used, and they will not be discussed any further. But, the finite element Pre/Post Processing Mocule was used extensively for building FEA models of the new and old supports based on the solid models produced of them in I-DEAS Solid Modeling, Object Modeling Module. Also, the Pre/Post Processing Module was used for display of the model solutions which were run with ANSYS programs.

TYPE OF FEA YODETS AND ANALYSES TD BE CONSIPUCTYD AND PEREORYED
Before the finite element models are constructed, it is necessary to decide what type of FEA models and what type of finite elements are be best suited for the analyses that are to be performed.

ANSYS is capable of performing: THEFMAL, SIAAIC, LINEAR BUCKITNG, MODE-FREDUENCY, FUUL HARYDNIC RESPONSE, NCNLINEEAR TRANSIENT DYNAMIC, reduced linear transient dinanic, meduced harmonic response, and SUBSIFUCIURE GENGRAIICN Or SIRESS PASS analyses. The specification of the analysis type is done in ANSYS with the "KAN" cammand.

The ANSYS finite element software contains an extensive finite element libcary from which the element type(s) could be chosen. These include POINT or matrix, LINEAR or line, ARFA, and VOLNE elements, which are either 2D or 3D elements. The ANSXS \({ }^{R}\) Fngineering Analysis User's Manual \({ }^{18}\) lists the elements that are available, and the input and output data, theory, assumptions associated with each. The specification of the ANSYS element type (which is done with its "ET" command) is discussed in Appendix XIII. In I-DEAS the default element type is setup by specifying the family, order, and topology for the element type desired. Once the default element type is specified, all subsequent elements created are of this type.

\section*{MESH AREAS AND YFESH VOTUYES}

Mesh areas are bounded planner areas in 3D space which the I-DEAS program can autanatically mesh, by dividing them up and creating finite elements on them. When models are created with VOUNE elements, rather than AREA elements, MESH_VOLIIES are required. Nesh areas (and mesh volumes) can be created directly. But, in order to take full advantage of a common database throughout this "Yechanical Computer Aided Analysis", I-DEAS allows the geometry created in Object Modeling to be
18. Gabriel J DeSalvo, Ph.D., Robert W. Gorman, ANSYS Fnginemeing Analysis System Userfs Yanial, Swanson Analysis Systems, Inc, , Houston, Permsylvania, 1987, Agpendix C.
used in Engineering Analysis. It allows mesh areas to be constructed through the selection of closed-loops of geometric curves.

Two types of mesh areas are available within I-DEAS Pre/Post Processing for use in automatic mesh generation. The first are called FREE NIESH areas. They require a large amount of computer computation during automatic meshing. But, free mesh generation automatically determines the transitions between the elements created in adjoining mesh areas, and can create irregular meah patterns. It requires little segmenting of models for automatic meshing. But, care must be taken in planning the mesh areas to prevent the creation of overly distorted elements, which can lead to errors in the FEA solutions.

The second mesh area type is called "MAPPED_MESH". Mapped mesh generation requires less couputer couputation curing autamatic mesh generation than free mesh generation. It can not produce irregular mesh patterns; and it requires mamal creation of transitions between mesh areas. It also requires considerable segmentation of the models.

\section*{GEDMEHEY DEETNTHTON}

Since mesh areas are constructed through the selection of closedloops of gecmetric carves, it was necessary to define the geametry from which these curves were selected. The geametry of the I-DEAS solid models are often too complex for direct use in the construction of FEA models. SURC anticipated these types of problems, and therefore, I-DEAS uses working sets, rather than solid models, for the gecmetry used to aid the user in constructing mesh areas and volumes, used to automatically mesh FEA models. It also allows working sets to be shared by Solid Modeling, System Assembly, and Engineering Analysis.

Working sets can be created in I-DNAS Solid Modeling Family for use in Engineering Analysis. But, they can also be created and modified within Engineering Analysis. Engineering Analysis' commands are capable of creating new working sets based on the edges and vertex points of couplete solid models, or on their surfaces.

The first step used in the construction of working sets from existing solid models is the creation of the gecmetric framework for the sets. For this thesis, this was done by using MANAGE FE MODETS, CREATE command to name the basic FFA models, and the working sets that were created for each. Then the CREATE_WIRE, FROM OBJECT, GET_OBJECT command was used to have I-DEAS create a working set from the solid models that were created of the entire supports (see Chapter V).
once initial working sets are created, the CREATE_WIRE, POINT, POSIIION, BEIWEFN VISIBIE Command was used to create points, to create end points for the mesh areas needed for automatic meshing. In this process all umecessary geometry from the solid modes (e.g., for this thesis, the tines used to crimp the supports to the heating coils) can be eliminated.

After end points have been created, lines can be created connecting them. These lines ware eventually selected when the boundaries of the mesh area were created. They were constructed with the CRFAIE WIRE, ITNE, POINI_TO_FOINT command. After the lines are created for the boundaries of the mesh areas (or volumes), any unneeded geanetry can be deleted fram the working sets.

\section*{PHYSICAM AND NANTERTAL PROPERTITES TABTES}

Before the mesh areas and finite elements can be created, MATerial and Fhysical properties tables needed to be constructed. This involved the specification of the desired properties for materials being modeled.

I-DEAS pcovides a command called "ANALYSIS_PRCCRAM_MASK". This command can be used to specify the analysis program which will be used to solve the FEA models. Once this is done, I-DEAS will only make available those material and physical properties used by the specified analysis program. It allows the user to select from: NEUNRAL; MCDEX_SOLN/OPITM (I-DEAS); FRAME (I-DEAS); NASIRAN_(MSC); ANSYS_SASI; and SUPERB. ANSYS_SASI was selected for this thesis; and then the material properties tables were created.

After the materials tables were created, physical properties tables needed to be created to describe physical properties (e.g., thickness) the elements being used in the FFA mocels. For the shell elements that were applied in this thesis, the only physical property that the elements required was their thickness.

\section*{CREATION OF NIESH AREAS}

Once the material properties were defined, mesh areas can be constructed. I-DEAS Engineering Analysis provides coumands required for the creation, orientation, modification, and management of mesh areas and mesh volumes. It also contain the commands for the automatic meshing of the mesh areas and volumes, and for the direct creation, orientation, modification, and management of the active FFA models nodes and elements.

In orcler for the mesh areas or volumes to be visible on the screen, the MESH_SNS, MRSH_AREA_SN and/or MESH_VOLINES_SN switch(s) must be turned ON. Also, when it was desirable, the mesh area (and volumes) labels can be displayed with the LABEYS, MESH_SWS, ON command.

Before creating mesh areas, the following options can be selected or confirmed as the desired dafault values. The SURFACTNG oommand is used to confirm that the default value of AUICMATICALIY ATHACHED surfaces is set. This caused I-DEAS to automatically create and attach a surface to each mesh area as they were created. The COLOR command is used to change colors for each set of mesh areas that are created. Finally, the TYPE_OF MESH_AREA comand is used to specify which mesh areas type is desired.

Once the defaults are set, mesh areas can be created through the manual graphics cursor picking of the curves needed to create each mesh area, with the MESH AREA, CREATE Command. The create command requires the ingut of the mesh area start label (applying the default of 1 for the first mesh area), and the label increment (which was left as the default of 1). Next it calls for the confirmation of the element type which is to be used for all subsequent mesh areas created. After the element type is specified, the CREATE command asks for the selection of the Physical Property Table. This is followed by the confirmation of the material type (default is ISOIROPIC). Finally, the Material Property Tables required. After all of these specifications are made, the CREATE command asks for the selection of sets of three to one mundred cunves that formed a continuous loop around each meeh area. The curves were generally selected by using the screen arrsor to pick the VISIBLE curves. I-DEAS highlights each of these curves as they were
picked. But, in the case of relatively small lines and the arcs at the supports' bends, the SCRERN_AREA, DIACONAL POINIS screen selection method can be used. Whan this was done, I-DEAS did not highlight those curve. If a curve was selected which does not share a camman end point with the previously selected carve, I-DIAS notes the error and asks for a new selection. If a pick as ambiguous, due to arrves which are laying on top of each other, I-DEAS presents a directory of their labels, and one can then be selected. Once the last curve in the loop around a mesh area is picked, D (Done) is keyed in. This may causes the program to state that no common surface was found related to all of the selected curves (because no areas existed in the models), and it asks if one is to be picked. Once NO is selected, a surface and the mesh area are created. The CREATE command then proceeds with the prompts needed to create additional mesh areas, until Done (D) is typed, or a <REIURN> is entered without a cursor pick.

\section*{MUITIPTE FFA YDOERS}

Once mesh areas have been created I-DEAS automatic mesh generator can be used to create the nodes and elements on them. In order to create several models (i.e., several mesh sizes for each) from the same mesh areas, temporary models can be copied into other models using the commands located in the NANAGE menu.

\section*{DISIMNGUTSHMG YODETS' PIECPS KITH COTORS}

In order to be able to distinguish the nodes and elements associated with each piece of an FEA model, different colors can be used for each piece. This is accomplished by setting the default colors for the
nodes and elements, and then meehing one piece at a time. This scheme doesn't always work exactly as it should have. It is not known why. But, is some cases the default colors are only applied at the boundaries of the mesh areas. When this cocurs, the colors can be modified after the nodes and elements are created. The entities that required modification can be specified by the meah areas they were related to. If the mesh areas for each piece are created with different colors, the mesh areas' colors can be used to specify which mesh areas were desired.

\section*{SPPCCIFYTNG MISH SIZES}

In order to use the autcmatic mesh generator, the MESH_SIZE needs to be specified. This determines the nominal size of the elements that the automatic mesh generator will produce. I-DFAS provides commands which can be used to specify element sizes for localized areas, to scale the global and local element sizes, and to determine the rumber of elements generated by dividing up the lengths of the selected curves.

Whenever I-DEAS meehes mesh areas or mesh volumes, it freezes them. This allows I-DEAS to remember the locations of the nodes, and it prevents them from being deleted if nodes and elements exist in these areas. The MESH_SIKE, FREE MIRSHING, UNFREFEE Comand is used to unfreeze mesh areas when nodes and elements had been created that needed to be deleted (e.g., due to application of the wrong global mesh size).

\section*{AUTOYATIC MESH GEVERATTON}

Once all of the preparations for the autamatic generation of the nodes and elements, I-DEAS GENERATE MIESH command can be used to mesh the entering the color of the mesh area; and then entering a <REIUFN>, mesh
the specified meeh areas. If the nodes and/or elements display are turned on, they will be displayed on the screen as they are generated. This is desirable, because after I-DEAS generates the mesh, it proupts the user to answar if it is "OK to keep nodes and elements?" (Yes or NO). Once this question is answered, I-DEAS terminates automatic mesh generation.

\section*{MIPRGNG NODES}

When desired, nodes in FEA modes can be merged together, as was dane for this thesis's "welded" nodes. In I-DEAS Preprocessing, nodes Can be menged with the NODE COINCIDENCE command. This coumand is used to check an FEA model for nodes which reside in coincident locations, to merge them if desired. The command allows the user to specify which nodes are to be tested for coincidence, and the distance between nodes that is to be considered coincident. This command can be used to select nodes to be tested for coincidence using the SCREFPN_AREA, DIAGONAL_POINIS method to limit the testing to only those sets of noces that are to be menged. Once the appropriate nodes were specified, entering D (Done) or <REHURN> was entered without picking any additional nodes, tells I-DEAS that no more nodes are to be tested. Then I-DEAS asks the user for the distance between nodes that is to be considered coincident. After this is specified, I-DEAS determines which, if any, nodes are coincident, and prints out either the coincident node labels only, or the coincident nodes labels and the element which use those nodes. Finally, the NODE COINCIDENCE Ccumand asked if it is "OK to merge coincident nodes?". When the correct listing of nodes for "welding" is obtained, this final question can be answered with yes. This caused

I-DEAS to redefine the elements which used the pairs of coincident nodes, eliminating the use of one of the nodes. This process doesn't deleted the unused noces. That can be accamplished with the NODES, DETEHE, ALL Command. The delete command can not delete any node which is used in an element's cormectivity. This allows the DETEIE, ALT command to be used, because only those nodes which are urused after the merging operation are deleted.

\section*{RESTRATNDNG FTA YODETS}

Once FEA models have been constructed, it is necessary to restrain them so that they could be loaded. The restraints needed to model the manner in which the objects being modeled will be supported in application.

At this stage in an analysis, it may be necessary to convert the FEA model's nodes' definition and displacement coordinate systems from one coondinate system to another (e.g., from Cartesian to Cylindrical coordinates). This will allow the model's restraints to be created using different global coordinate directions then were used in the creating of its nodes.

I-DEAS displays the labels \(x, y\), and \(z\) for all coordinate values, regardless of which global coordinate system is active. Thus, when the nodal displacements were restrained, and when the restrains were listed for verification, the " \(x\) " values represented the radial dimension; the "y" values represented the angular dimension; and the " \(z\) " values represented the vertical dimension, in the active Global Cylindrical Coomdinate System.

The RESIRAINIS ccumand presents a memu of commands which are used to create restraint cases and to create the restraints applied in those cases. Multiple restraint cases can be created for a single FEA model. The set which is being viewed and operated on is made active with the RESTRANNIS, CURRENT Command. Thus, the first step in creating the restraints is to use the CREAIE SEF ccumand to establish the name (or ramber) under which the set was stored.

Having establish the active restraint set, the RESIRAINIS, NODAL_DISPLACFETRNT command can be used to specify the nodes for restraint. I-DEAS allows restraints to be specified as constants, setting the displacement of each node selected's translations and rotations to specified values (most often zero), or to set them "FREE".

\section*{LRADING OF FFA YODEETS}

After the models' are restrained, the next step in the I-DEAS preprocsssing of an FEA model is the application of static loads. This involves the creation of LOAD_SEHB, which contain the desired loads. For this thesis, FACE PRRSSSUREs, and NODAL FORCES were used.

\section*{ANALYSTS CASE SETS}

The next step in I-DEAS preprocessing of FEA models is the creation of analysis case sets. A case set contains at least one load set, and one restraint, and/or one constraint set. Case sets are created with the CASE MANAGEIRNI, CREATE ccumand. The CREATE command prompts the user for a case set name or number under which it will be stored. It then asks for the selection of the losd set(s), and a restraint set, and a constraint set. Responding to any of the load, restraint or con-
straint selection proupts with a <REHURN> and no name or number tells I-DEAS that all of the load sets have been specified, or that no restraint \(\alpha\) no constraint set is to be used respectively. I-DEAS also provides the standard MODIFY, DELEIE, IIST, RENAME, DIRECIORY and SIAIUS coumands which can be used to manage the cases sets once they have been created.

\section*{WAVE FROMT OPTMYT2AMION}

The camputer requirements for an ANSYS solution run can be reduced by optimizing the "wave front size". The ANSYS program solves the system of simultaneous linear equations developed from an assembled finite element model using an "in-core wave front" procedure. The wave front is the number of equations which are active in the computer's memory after an element has been processed during the solution procedure. This method places a restriction on the size of the wave front for any given model definition. The restriction is based on the amount of computer storage available in the system being used.

The size of the wave front is determined by the sequence in which the elements are arranged. The size of the wave front will expands and contracts as the simultaneous equations are solved. The total system of equations is assembled from the element matrices into an assembly matrix. The first time the equations for a node are required by an element, they are added to the assembly matrix, expanding the wave front. Fach time a node is used by the elements for the last time, its equations are algebraically solved, and then its equations are eliminated from the assembly matrix in the computer's memory, contracting the wave front. As the solution of an FFA model progresses, the total
number of nodes equations in the assembly matrix determines the "instantaneous wave front sizen. The amount of active computer memory is therefore dependent on the instantaneous wave front size. The computer solution time is also dependent on the wave front size. It is proportional to the square of the mean wave front size.

Therefore, to minimize the computer memory and computation time, it is desirable to minimize the wave front size. I-DEAS provides commands which can be used to optimize (i.e., minimize) the wave front [size]. It also provides for the management of the "band width", which is important when other FEA programs that use "band solver" routines are used. This involves optimization based on node rumbering, rather than element numbering. But, since ANSYS was used for this thesis. Band widths will not be discussed any further.

For wave frant size optimization, the user first exscutes the OPITMIZE WAVEFRONT command. This causes I-DEAS to automatically optimize the wave front size. It presents the total number of elements processed, total length of the node adjacency array, and the maximum node degree. Then it displays a table of the current ("BEFORE") and optimized ("AFIER") element "frontwidth" statics. This includes the calculated maximm, average, and root mean square (RMS) values of the wave front. If the optimization results in an impoved (i.e., smaller frontwidth), then the REIABEL ELENENIS command ahould be execcuted. To verify that this has been exsecuted properly, the CHECK_WAVEFRONI_SAT command can be exscuted. This should show that the current frontwidth values match those displayed in the "AFIER" column in the OPIINIZE WAVEFRONI command first executed.

\section*{TRANSFER OF THE YODEXS TO ANSXS}

Once an FEA models is canstructed, a case set is created, and its frontwiath is optimized, it can be transferred to ANSYS for final preprocessing, and sulmittal to the ANSYS solution program. This is accomplished with the WRIIE, ANSYS command. This command tells I-DEAS to write an (ASCII) ANSYS input file. It will be named MODEX_FILE_NAME.DAT (where MODEL_FILE_NAME is the name of the current I-DEAS model file) by default. Or, the user can enter any appropriate name in response to this command's prompt for a file name.

After the KRIIE, ANSYS command asks for the file name, it asks if the problem type is SIRUCIURAL, HORMAL MODES, or HEAT_IRANSFER. The user is them prompted for the selection of the case set(s) that are to be written to the ANSYS input file. Finally, the WRIIE, ANSYS commands asks if starting and/or ending "JCL" are needed. The JCI stands for Job Control Language cards, which may be require for input of ANSYS ingut files into same installations of the ANSYS software. At GEA neither are needed. Therefore, both JCL prampts were answered as "MOM (the dafault answer), when each of the files were written out for this thesis.

Having written out ANSYS input files to the VAX computer disk directary, the models are ready for the next step, which is file editing and ANSYS preprocessing. This is discussed in Appendix XIII.

\section*{APPENDIX XIII}

ANSYS PREPROCESSING OPERAIICNS

\section*{ANSYS_SOFTHARE}

At GEA, Swanson Analysis Systems Inc.'s ANSYS finite element programs are available on select VAX computers in the AP1 and AP35 VAX clusters. At the time this thesis was being completed, ANSYS was available only on the "AP35V3" VAX. This was determined by typing: WHEREIS ANSYS <REIURN>,
at the VAX system level pranpt.
Once a user is logged on to AP35V3, the ANSYS programs can be called up by entering:
ANSYS <RPIURN,
at the VAX system level promot. If this is done, the program prompts the user for the selection of the version of ANSYS which is desired. At the time of this writing, at GEA the following ANSYS vergions were available: 4.1C, 4.2B, 4.3, 4.3A, 4.4, and 4.4A. Version 4.3A whs used for this thesis, because it is the version that the author had been trained to use at an "Introduction to ANSYS" seminar course taught by an ANSYS Suppart Distributor.

\section*{ANSYS TNTERACTIVE COYVAND FITE}

The ANSYS software creates and makes use of multiple files in the user's VAX disk directory, same of which are described in one of the next sections of this chapter. ANSYS automatically creates the names for these files, unless the user assigns logical names to these files prior to calling up the ANSYS program. ANSYS uses names like FILE12.DAT. If the ANSYS program is entered from a VAX diak directory that already contains these files from a previous ANSYS seasion, they may be overwritten, and destroyed. Therefore, if the user does not preassign other names for the ANSYS files, or at least renme those files that are to be saved before entering the next ANSYS session, it is recommended that the user perform different FE analyses from different disk directories to prevent losses. But, a better approach is to write, or make use of a copy of an existing, command file which will assist the user in assigning logical names to the ANSYS files.

For this thesis, an interactive command file, written in 1988 by Dr. Mike Day at the University of Louisville, called "ANSYS_INIER.CoM" was utilized. This file contains command lines that proupt the user for a logical file name, and then it assigns this name to all of the require ANSYS files. With this comand file, it was a simple matter of using the same names as the ANSYS PREP7 ingut files that were discussed in Chapter X. For excurple, when the PREP7 input file was N116. DAT, this comand file allowed the name "N116" to be used for the ANSYS files. It then made the file name assigments like N116.F12, where the file with the .F12 extension matches the standard ANSYS FIIE12.DAT file.

In addition to making the logical file name assignments, the ANSYS_INIER.COM Command file also calls up ANSYS version 4.3A. It
reminds the user that/INI must be entered within ANSYS to run it in the interactive mode. Also, when the user exits ANSYS, this command file assists the user in maintaining the ANSYS files. Without this command file, ANSYS would leave any file generated during the session in the users disk directory after exiting the program. But, with the command file, the user is asked if he would like to delete all ANSYS files except the preprocessing and postprocessing files. The user can enter Y, for Yes, and all other files will be deleted by the command file. Or, the user can answer \(N\), for No, and no files will be deleted. Finally, the user can enter \(P\), for Prampt, and the user will be prampted for the deletion of each of the existing ANSYS files. A copy of Dr. Day's command file is listed in Appendix IV.

\section*{ANSYS' BROCRAM_LEYETS}

When Ansys is entered (with, or without the command file), the first ingut is usually:
/INT <REIURN>.

This tells ANSYS the user wants to operate in an interactive mode. Since the interactive command file was used to activate ANSYS for this thesis, it reminded the author that /INT was needed to work interactivaly.
once the interactive mode is specified, the program enters what ANSYS refers to as the "Routine Begin Level". Then the program displays an introductory banner message, followed by a "BDGIN -INP=" prompt. This is followed by a cursor, presented for the imput of a program command
line. At this level in ANSYS, the ANSYS files can be managed, on-line documentation can be reviewed, and the user can select a "Routine Level" of the ANSYS program.

ANSYS uses different terminology for the structure of its camands then I-DEAS. Rather than Families, Nocules, and Tasks; ANSYS refers to Phases, Routines, and Modules. The Fhases do not actually exist as a leval of commands within ANSYS. They are simply the logical steps followed in performing a finite element analysis with the ANSYS software, which are: preprocessing, solution, and postppocessing. The Boutines are the first step down from the Routine Begin Level. Each Poutine is a collection of comands which are related by their general function in performing the operations required for a Phases of an analysis. Mochules are collections of comands within an ANSYS Routine, that are grouped together for the purpose of retrieving on-line documentation on them.

\section*{ANSYS COMYPNDS}

Each of the ANSYS command can usually be irgut with the first four letters of their complete names (more if they are necessary to distinguish it from the other commands in the current Routine). In this text the first reference to a command will be shown in a form like:

Coxyand.
Then any reference to that command will appear as:
COMM.
Unlike I-DEAS, ANSYS is not a mencu driven system. Each cperation is performed by inputting a coumand line. Within a Routine any of the commands present in the Routine can be escecuted, without the need to
move into different levels of the Routine's structure. Therefore, unlike I-DEAS which requires movement in its Task and menu structure to locate the desired commands, all ANSYS comands are present anywhere within a Routine. But, because there are no menus presented of the available commands, the user must either rely on memorization of the ccmmands, crib notes, hand books, or on-line documentation to know which coumands are available.

\section*{ON-INTE DOCLYIFNPNTICN}

ANSYS provides extensive an-line documentation, which can be used at any time during an interactive ANSYS session, recucing the need for external documentation. The on-line documentation for each Rountine's commands are organized in Modules. To view documentation on a specific command, the user must enter a command line specifying the Module desired, followed by a command requesting documentation. By typing: HETP <REIURN,

ANSYS will respond with a general explanation of how the on-line documentation can be obtained. But, ANSYS does not use the word HRNP to obtain any further information, it uses the word "Documentation".

At any time curring an interactive ANSYS session, DOCU can be requested. Without any qualifiers,
/DOCU <REIURS\\,
will yield a description of the commands present in the current Module. If the qualifier "AIL" is used, that is, if
/DOCU, ALL <REIURN>
is entered, all of the coumands present in the current Module will be listed including the format for their use with appopriate parameters.

If a command is used as a qualifier，that is，if
／DOCU，COMPND－NANE＜REIURN，
is entered，where COMMADDNAME is a command in the active Routine，ANSYS will display that command＇s purpose，arguments，and their definitions．

The＂current Mocule＂is determined by the last coumand that was issued．Once a command is issued，ANSYS moves into the Module contain－ ing that command，and it becomes the current Module．Therefore，if a coumand is issure，and then DOCU is used，all of the commands in the same Nodule as that command will be listed．

But，Modules can also be entered by typing the name of the Mocule． ANSYS makes it easy to determine what Mocules are available in the current Routine．By simply typing：

MOOUle＜REIURN〉，
ANSYS will respond with a list of all of the current Routine＇s Modules， and a brief description of what each Module＇s commands are used for． Likewise，it is equally easy to determine which Module is current．This is done by typing：

SIATUS 〈REIUPA＞．
STAT will yield the current Routine，and Module；and in addition，it will list the status on the parameters that are pertinent to the current Module．

\section*{SIASH COYMANDS}

ANSYS uses several comands which are proceeded with a slash（i．e．， a＂／＂）．These commands provide general control functions，and many can be used at both the Routine Begin Level and a Foutine Levels．Typing： DOCU，／CMD＜REIURN〉，
will yield documentation on the commands which are available for use at any current level.

The /CoMment command can be used to ingut and list comments which can be written into the ASCII coded ANSYS files. Any line starting with / OM will be treated as a comment, and the entire line can be used. When an ASCII coded ANSYS file is being created, or edited with a file editor, additional comments can be placed in any line, starting with a "*" placed in any colvun other than the first column in a line.

The /EOF command is used to tell ANSYS that the Find of the current File has been reached. When this command is used at the Routine Level, work in that Routine is terminated, and control is returned to the Routine Begin Level. When /EOF is used at the Routine Begin Level, operation in the ANSYS program is terminated, and the program is exited.

The /INPUT and /OUIPUT commands are used to switch the irquit or out of the next commands to a file in the current disk directory. The format for each is:
/INPUT (Or /OUIPUI),FNAME,EXT <REIURN>,
where FNAME is the name of the disk file (eight characters maximum), and the EXT is the file name's extension (three character maximum). For example:
/INPUT,N116,DAT 〈REIURN〉,
would be used to transfer the ANSYS ingut file named "N116.DATM into ANSYS from the cunrent disk directory.

The title of the FEA model (or analysis case if more than one analyses is being done on similar models) is ingut by typing: /TIIIE,NEN SU SUPT W/ 1/16" MESH - J.A.KERN <RBITRD,
as an example. When I-DEAS created the ANSYS irqut files it wrote a title in each file which consisted of the I-DEAS database description. This resulted in the same TIITE in all of the ANSYS imput files. So, when the files were edited, the TIILEs were changed to better describe each analysis case.

\section*{ANSYS FIIES}

As discussed earlier, ANSYS creates and works with multiple files which are stored in the users current disk directory. Same of these files are written in binary code and can not be edited with a screen editor or word processor, while others are written in ASCII code and can be edited. Fach file serves a different purpose, and same store different information before and after the solution routine has been run. All of the ANSYS files are described in the ANSYS Enginepring Analygis Systen User's Manual \({ }^{19}\). Plus, ANSYS includes a screen as part of the on-line Documentation which can be reviewed during an interactive ANSYS session by typing:

> DOCU, FILE <REIURN〉,
or simply
FIIES <REIURN>.
Table 7. lists same of the ANSYS files that are most often used. These file names are the default name declarations made by ANSYS. For this thesis, the interactive command file was run when accessing ANSYS, giving all files logical names like "N116.F02" in place of "FIIEO2.DAT".
19. Gabriel J. DeSalvo, Ph.D., Robert W. Gorman, ANSYS Fngineering Analysis System Urerc's Mamual, Swanson Analysis Systems, Inc., Houston, Fermsylvania, 1987, Appendix C.

TABIE 7.

ANSYS FTIES
\begin{tabular}{|c|c|c|}
\hline FTPE & TYPE & COVYENIS \\
\hline FITE2 & BINARY & MODEL GDOMEIRY AND PREVIOUS IIERATICN SOLIIIICN \\
\hline FIIE3 & BINARX & ANALYSIS DATA INPUT FROM SFWRITE COMAND \\
\hline FIIE5 & ASCII & INITIAL INPUP DATA \\
\hline FIIE12 & BINAFX & POSTPROCOSSING DATA AFIER SOLUITICN ROUIINE IS RUN \\
\hline FITE14 & ASCII & EmFMENT DEFINIITICNS CNLY (WRITIEN CNLY UPON RERUEST) \\
\hline FITE15 & ASCII & NODE DEFFINITIIONS ONLY (WRTITEN ONLY UPCN REQUEST) \\
\hline FIHE16 & BINARY & FIIE FOR SAVING PREP7 HORK FOR IATER RESUME (SAVE/FINI) \\
\hline FILE17 & BINARY & TEMPERAIURES WRIITEN BY SFWRIT FOR KIMMPE-1 ONLY \\
\hline FITE18 & ASCII & ITST OF ALT USER INPUT COMVANDS \\
\hline FIIE19 & ASCII & ERPOR LOG \\
\hline FIIE21 & BINARY & PLOT DAIA BASE \\
\hline FIIE23 & ASCII & BOUNDARY CONDITIONS CNLY (WRITIEN ONLY UPON PEQUEST) \\
\hline FITE27 & ASCII & COMPLEIE ANSYS ANALYSIS INPUT DATA FRCM AFWRITE COMMAND \\
\hline FIIP28 & ASCII & REAL CONSIPANS ONLY (WRITIEN ONLY UPON REQUEST) \\
\hline FIIF29 & ASCII & MANERTAL PROPERIIES ONLY (WRIITEN CNLY UPON REQUEST) \\
\hline
\end{tabular}

The first Phase of ANSYS finite element analysis is preprocessing. At ANSYS' Routine Begin Level, the command: DOCN,FREP <RHIURD,
was entered in order to determine which Routine would be best guited for the PRFProcessing of the FEA models for this thesis. ANSYS responded with an explanation that two preprocessor Routines are available. The PREP7 Routine is used to begin new analyses. Its modules contain
commands useful for defining FEA models, and their case sets. The PREP6 Foutine is use to define additional load steps for existing FEA models.

Therefore, the PRBP7 Routine was used for the preprocessing Phase of these analyses. That Routine Level is reach from the Routine Begin Level by typing:
/PREP7 <REIURN>.

When PREP7 is first entered, ANSYS displays several of the most commonly needed comands, with a brief description of each.

\section*{SAVE AND RESUYEE COYYANDS}

ANSYS PREP7 contains the capability to save all work done in preprocessing an FEA model file at any point during an interactive ANSYS session, and to resume work at the same point that the work was last saved. This is needed if the user wishes to leave an ANSYS preprocessing session and return to it later. It allows the user to protect his work by creating a back-up file which can be retrieved in the event that the system "crashes", or the data line is interrupted. Also, this allows the user to save the work that has been completed, and then execute a command which might yield unacoeptable result. If the result are OK, then the user can go on with his work. But, if they are not OK, the data that is in memory can be replace with the data which was save to a disc file. This is accomplished by entering:
SAVE <REIURN〉,
at any time during a PREP7 interactive session. Each time the SAVE command is executed, the data in memory is overryititen in FIIE16. In ANSYS terminology, FIIE16 is "rewound" and then the new data is written
into the same FIIE16 replacing the existing resume data. To retrieve this data, replacing the data in active memory, the user types:

RESUME <RETURTD.
The SAVE command is automatically executed each time the user exits PREP7 by typing:

FINIshed <REIURN>.
FINI is the normal command used to exit from any ANSYS Routine. The /EOF command is only used to exit a Poutine when the user does not want the data in active memony to be saved.

\section*{PROCFPDTRE}

ANSYS includes a very helpful form of documentation, which is viewed by typing:

PRocedures <REIURN>.
The PROC command presents sixteen (16) steps which can be followed in setting up a finite element analysis with ANSYS. The steps are numbered 1 through 16. The PROC command is used by typing:

FROC, N <REHURND,
Where \(N\) is either: the NUMBER for one of the sixteen steps; PREVious, for the step prior to the last step that was reviewed; SAME, to review the same step as the last step that was reviewed; or, NEXI, for the next step in the process.

STEP 1. - SPDCCIFTCATION OF THE ANALYSTS AND ET DYDNT TYPES
PROC, 1 suggests that the next step in performing an ANSYS analysis, after creating a TIILE, is to specify the ANALYsis type. For this thesis, all of the analyses performed were static structural analyses. Therefore, the ANSYS input files written by I-DEAS needed to contain a command to specify this ANALYsis Type. Entering DOCU, ANALY in ANSYS Prapp yields a display of the KAN command, which is used to epecify the analysis type, and the parameter values for each type of analysis available. For this thesis, the ingut files needed to contain the command line:
KAN, O,
which specifies a SIANIC analysis.
PROC, 1 also indicates that DOCJ,SELECt should be used to select the Element Type that is to be used. Then switch to the PREP7 ETYPE Module, and use the EII command to associate the elements with a type number. Therefore, DOCJ, SEXE was entered to review the element types. (Note that in I-DEAS Prepprocessing, the elements for the supports were specified as quadrilataral thin shell elements, and the elements for the load plates were specified as triangular thin shell elements.)

GECM can be one of the following geametric element types: POINT, ITNE, ARFA, or VOLUme. DIM can be either 2D or 3D for the space that FEA model must occupy. For this thesis, the following was typed:
/SEXE,AREA, 3D <REIURN>.
ANSYS responded to this with a list of several element types from the ANSYS "JSIIF" libcary, all of which were area elements which occupy 3D space. Fram this list, the element type with JSIIF number 63 was crosen (quadrilateral flat shell elements).

Then following the directions from DOCD,SETE, the ANSYS command SIIF, JSIIF was used. SIIF provides documentation on each of the available element types, by element type number. This is a brief sumary of the information that is printed in the ANSYS User's Yanual \({ }^{1}\). But, SITF did provided the: number of nodes; degnees of freedom per node; real constants; propenties; presenures; temperatures; and "KExOffions" which can be applied to the specified element type. Each of these were noted, and this command was revisited when each of these parameters were reviewed to determine if I-DEAS had properly written them into the ANSYS input files.

The section of the ANSYS User's Manual \({ }^{2}\) covering SIIF 63 was read, and it was discovered that the triangular elements used for the load plates could also be defined using SIIF 63 elements. The difference being that the supports' quadrilateral elements would be defined by four nodes, referred to as nodes I, J, K, and L; where the load plates' elements would be defined by three nodes, with the third node repeated (i.e., nodes I, J, K, and K). Therefore, when the ANSYS input files written by I-DEAS were reviewed and edited, they were checked to see that all elements were defined using the SIIF 63 element type, and all of the load plates' elements were defined by three nodes with the third nocle repeated as a fourth node.

Next, still following the directions fram PROC,1, the cammand ET was reviewed. Er is used to define an element type. For this thesis,
1. Tbid, pp. 4.63.1-4.63.5.
2. Tbid.
each model contained one element type for the supports, and a second elemant type for the load plates when used. The format for this command is:
ET, IIYPE,JSIIF,KOP1, KOP2 , . . . ,KOP9, INOPR.

The IIYPE argument identifies the element type. It can be an integer between 1 and 20. For this thesis it was 1 for the supports, and 2 for the load plate. JSIIF is the stiffness library number for the element type, which was 63 for both IIYPE 1, and ITYPE 2. The nine possible KEYOPTions (i.e., KOP1, KOP2,...) were reviewed in the SITF, 63 on-line documentation, and it was determined that none of the six options for SIIF 63 were needed for the analyses to be performed, and thos all were reviewed to be sure they were set to their default value of zero. INOPR was also confirmed as set to its default value of zero. If it had been set to 1, the print out of all element solutions of this ITYPE would have been suppreased.

\section*{STHEP 2. - ANALYSTS OPITONS}

PROC, 2 identifies the second step in an ANSYS analysis as the time for specifying any analysis options that are desired. Following its instructions,

OPIIONS <REIURN>
was typed, making the OPIICNS Module active. Then STAT, DOCU, and DOCU,ALI were all used to determine if any analysis options were desired. This lead to the use of DOCU, KAY. The KAY command is used to set special analysis options. These include: interpolated/extrapolated displacement calculations; large deflection solutions; stress stiffening; and the use of Newton-Raphson Procedures. None of these options
were desired. Thus, all were left with their default values of zero, and no KAY command lines were expected in the ANSYS input files written by I-DEAS. Also, because the material properties for the aupports and the load plates were linear, the KNL (Key Nonlinear) ccumand was not used. If nonlinear material data tables (NL command) had been used, KNL, 1 would have been used.

\section*{STVP 3. - MATERTAT PROPRERTES TABTES}

FROC, 3 leads the ANSYS PREPT user to the application of the MATErial Properties Mochule, and the nonlinear properties set with KNL, and the NL command if needed. For this thesis, the NAIE Module was entered, and then DOCU and DOCIJ,AII were used to apply the command line: LABEL*,MAT, \(\infty, C 1, C 2, C 3, C 4\).

In this command, LABEL* can be any valid material property label. MAT can be any arbitrary integer between 1 and 100, serving as the material identification number. For this thesis, a MAT of 1 was used for the surface unit supports, and a MAT of 2 was used for the load plates.

From SIIF, 63, it was known that the valid material properties for the quadrilateral flat shell elements were: EX, EY, ALPX, ALPY, NUXY, DENS, and GXY. Only those properties which were required for the static loading case analyses needed to be specified. Therefore, when the ANSYS inqut files written by I-Dras were reviewed, they were check for the proper Moduli of Elasticity (i.e., EX,1,0.28E+06, and EX,2,10.0E+06); and Poison's Ratios (i.e., NUXY,1,2.9E-02, and NUXY,2,3.34E-02). Because EY values were not defined, they default to the EX values. Because they were input in I-DEAS, the coefficients of thermal expansion (ALPX), and mass densities (DENS), values for the stainless steel alloy
support material and aluminum load plates were expected to appear in the ANSYS input files written by I-DEAS. But, because no thermal or acceleration loads ware analyzed, they would not be used in the ANSYS solutions.

\section*{STEP 4. - REAL ONSTANTS DEFTNITTCNS}

FROC, 4 calls for the definition of the elements' Real Constants, which are set with the commands in the RCONstants Moculle. These are specified with the command:
R,NEST,R1,R1,R3,R4,R5,R6 <REIURN〉,
in which the NEST value is real constant set's (arbitrary) identification rumber. The six real constants' values \(R 1\) through \(R 6\) are values specified to satisfy the requirements of the JSIIF element type(s) being used. If more than six values are needed, the RMORE comand is used, and if the user needs to modify real constant values during an interactive ANSYS session, the FMCDIFY command is used. Both following the same argument format as the R comand.

From SIIF,63, it was known that the valid material properties for the quadrilateral flat shell elements were: TK(I), TK(J), TK(K), TK(L), EFS, and THEIA. The thickness values (i.e., TK(I), TK(J), etc.) can be used to vary the elements thicknesses amoothly over the area of the elements, with the thickness specified at the elements nodes. But, because the supports' and load plates' thickness were constant, only TK(I) values were needed. ANSYS applies this same value as a default to the other node thicienesses. Therefore, when the ANSYS ingut files written by I-DEAS were reviewed, they were checked for the proper thickness values (i.e., R,1,0.05, and R,2,0.10).

\section*{STYP 5. - GEOYIMRK DEFTNTHTION}

PROC, 5 presents the Modules used to define the model's "geametry" and "mesh". This can be accomplished through direct definition of nodes and elements (i.e., creating the FEA "mesh"), and due to the assembly of the elements in eqpace, the "geometry" is also defined. But, ANSYS also provides the capability of defining the "gecmetry" for the models, which will serve as the boundaries for the FEA mesh, and then ANSYS provides autcmatic mesh generation, which allows the program to generate the nodes and elements.

ANSYS calls its autcmatic mesh generation "solid modeling". ANSYS solid models are not constructed like I-DEAS solid models, and they do not contain camplete physical properties like I-DEAS solids, ANSYS solid models are constructed through the creation of "KEY POINIS", and then lines, arcs, areas, and volumes based on the key points. ANSYS literature shows examples of solid models which have been displayed using graphics workstations which contain terminal-dependent light source shaded image capabilities. The author has never explored these capabilities. But, it appears that if I-DEAS solid modeling is available, its capabilities in this area would be more easily applied to the creation and display of solids, then ANSYS' method of solid modeling. The exrception may be in the fact that ANSYS provides the further capability of defining the solids based on parametric geometric coordinate locations. This gives the user the ability to design models with the ability to optimize the design by changing the values of parameters, rather than constructing complete models when iterations are needed.

For this thesis, the models had already been constructed in I-DEAS. At this step in the analyses, the command lines in the ANSYS
ingut files related to the definition of the nodes and elements need to be understood, so that they could be reviewed for accuracy. The method used in the input files for "mesh definition" is the direct creation technique. Therefore, those modules, and ccumands referred to in PROC,5 relating to direct definition of nodes and elements were needed.

FROC, 5 leads the user into the CDSYS Module. This Module is used to define the coordinate system in which the nodes (and key points if used) are dafined. For this thesis, Cylindrical coondinates were desired. Therefore, the command:

CDSYS, \(\$\) DOCU <REIURN>
was entered interactively. This caused ANSYS to display the on-line documentation that is available for this Module. Note that two commands were combined on one command line by separating them with a "\$". This tecinnique can be used to combine several cammands on one ccumand line. From the resulting display,

> DOCU,CSYS <RETURA>
was entered to review the coordinate systems which are predefined by ANSYS for user selection. This informs the user that the CSYS command can be applied with one of the following arguments: 0 for Cartesian, 1 for Cylindrical, 2 for Spherical, or N for a Number the user has defined for a custanized coordinate system. Thus, for this thesis, it was then known that the ANSYS inqut flies written by I-DEAS should contain the command line:
CSYS,1.

After the coordinate system was defined, PROC,5 calls for the creation on nodes. This is accomplished with the cormands documented in
the NODES Module. Nodes are directly created with the N command, whose format is:
N, NODE, X, Y, Z,THXX,THYZ,THXZ.

In this command, NODE is the node number that is to be assigned to the node being created. \(X, Y\), and \(Z\) are the nodes locations in the current cocrdinate system. Therefore, in cylindrical coordinates these parameters are R, Theta, and 2. The values of THXY, THYZ, and THXZ are rotation angles, in degrees, of the nodal coordinate system relative to the global Cartesian coordinate system.

Finally, when the nodes have been created, the elements can be created. This is done with the commands in ELFMent Module. Before an element is created, ANSYS must be told which of the: element types that were defined with the ET ccumand; real constant sets that were defined with the R command; and material properties sets that were defined with the MATERial Modules commands are to be applied to the elements. This is done with the following ccmands:

TYPE, ITYPE <REIURN〉,
REAL,NSEET <REHIURS>,
MAT,MAT <REIURN>;
in which ITYPE, NSEP, and MAT are the integer nambers assigned to the element type, real constant set, and material properties set desired for all elements created after issuing these commands. When I-DEAS wrote out the ANSYS input files, these three commands were combined into single command lines. Therefore, when the input files were reviewed, they contained the command line:
\[
\text { TYPE, } 1 \text { \$ REAL, } 1 \text { \$ MAT, } 1
\]
before the elements for the supports were defined, and the command line:

TYPE, 1 \$ RIENL,2 \$ MPT, 2
before the elements for the load plates were defined. If these commands were not used, all elements would have been defined with the default value of 1 for each of the sets, making all elements in the models with a single combination of element type, real constant set, and material.

The command used to create the elements was the E command which creates elements one at a time. It has the format:
\[
E, I, J, K, L, M, N, O, P<R E I U R N\rangle,
\]
in which \(I, J, K, L\), etc. are the nodes needed to define each element. Because quadrilateral shell elements were used, only four nodes were need for each element. Therefore, when the input files were inspected, they contained lines like:
E, I, J, K, L,
for the supports, and:
E, I, J, K, K,
for the triangular shell elements for the load plates.

\section*{PRPCGDURE SITEPS 6 THROUEH 9}

The next four steps outlined in the on-line documentation for the ANSYS analysis PROCecture were not used for this thesis. PROC, 6 explains the module and commands that can be used to define coupled degrees of freedom (DOF). PROC,7 is followed if linear constraint equations are to be used in an ANSYS analysis. PROC, 8 describes the creation of "master degrees of freedam", which are needed in analysis types (KAN) 1, 2, 5, 6, and 7. Finally, PROC,9 is applied when a linear transient analysis (KAN,5) is being performed with gap nonlinearities.

STEEP 10. - IOAD STEP OPTHCNS
PROC, 10 identifies the need to apply the load step options module, LOPTions, to specify the control, print, and data file options to the models that are to be solved. The LOPTions Module also contains the cammands needed if "body loads" are to be applied, such as the loads placed on a model due to acceleration (e.g., gravity) and rotational velocity. Naither of which were applied to the analyses performed for this thesis. Which of course implies that the assumption was made that the static forces applied to the surface unit supports were significantly greater than the effects of their own weight, to make the acceleration bocky loads negligible.

ANSYS allows the user to define several load steps to a single finite element model, and to have then each solved in a single computation "run" of the ANSYS solution routine. For this thesis, each model was only solved for a single losd step. But, this procedural step was still required for each.

To access the on-line DOCUmentation for the LOPT Module,
LOPT 〈REIURN〉
must first be entered to access the LOPT Module. Then the DOCU command will yield a listing of the six Documentation screens that are available, each of which can be reviewed by typing:

DOCU,N <REIURA>,
in which N is an integer between 1 and 6.
LOPI\$DOCU, 1 describes the commands that are used to control the load options. For this thesis, the only command appearing in this DOCJ screen that was used for this thesis was IIERation coumand, and its use will be discussed in Chapter XV.

LOPI\$DOCU, 2 is used for modal analyses only, and thus was not used. LOPI\$DOCU, 3 displays commands that can be used to define calculation options. From this list, the KRF command was used to cantrol the nodal force and reaction force calculations and printout. The ANSYS PREP7 input files each contained the command line:

\author{
KRF, 1 <REFURN>,
}
which tells ANSYS that the nodal forces are to be calculated and printed for each element, and the reaction forces are to be calculated and printed for the nodes which have had their displacements constrained. The ingut files also contained the command line:

KSE, 1 <REIURN>,
which informs ANSYS that the strain energy is to be calculated and printed for each element in the model.

LOPI\$DOCU, 4 discusses the use of commands that will control the printing of nodal displacements and forces, and element stresses. The ANSYS FREP7 ingut files written by I-DEAS did not contain any of these camands.

LOPI\$DOCU,5 displays the commands which can be used to control the frequency of displacements, stresses, and forces into the solution file. None of these commands were written into the input files by I-DEAS. LOPI\$DOCU,6 indicates which commands can be applied to control the load files and data in those files. Again, I-DEAS did not apply any of these commands when the PREP7 inquit files were written.

\section*{STYP 11. - APPTCTMON OF CONSTHATYTA AND IOADS}

FROC, 11 indicates that the boundary conditions should be applied to the model at this stef in the procsedure. The models were to be constrained as discussed in Chapter X. The loading of the models is discuseed in Chapter XIII for the mesh size optimization and model verification, and in Chapter XV for the load test similation.

Tha nodas at the ends of the supports were to be assigned displacement values of zero in the Theta and 2 directions, for all of the analyses performed. To verify that I-DEAS wrote the proper displacement constrains in the ANSYS PREP7 ingut files, the LOADS Module was enter, and the available commands were reviewed by typing:

> IOADS\$DOCU <REIURN〉.

This showed that the Displacement coumand was need to constrain the end nodes. The D command has the following format:

D, NODE, LAB, DISP, CDISP, NEND, NINC, LAB2, ...LAB6.
NODE is the nocle namber for the node being displace (cr constrained by a zero displacement). LAB is any valid dieplacement direction or degree of freedam, chogen from ALI, UX, UY, UZ, ROIX, ROIY, and ROIZ. DISP is the value of the dieplacement. CDISP is the imaginary part of the displacement, used in hamonic response analyses. NEND ard NINC can be used to name additional nodes which are between NODE and NEND in increments of NINC. LAB2, ...IAB6 are other LABels for which the same value of displacement are to be specified. Therefore, the command lines in the ingut files were check to be sure that each contained three nodes constrained with:

> "D, NODE, UY, \(0 .,,, "\) and "D, NODE, UZ, \(0 ., 1, " ;\) or, \({ }^{\text {MD, NODE, UY, } 0 ., ~, ~, U Z " . ~}\)

\section*{SIYPRS 12 TFROCKH 14 TN THE ANSYS ANDKYSTS PROCFDURE}

Step 12 in the ANSYS analysis procedure was not applied to this thesis. It irvolves the definition of temperatures for analyses involving thermal loads, and internal heat generation for beat transfer anmlypes. Steps 13 and 14 are used to merge nodes and to reorder elements to reduce the wave front which can rechuce the computer requirements for the analysis eolution phase. The nodes that needed to be merged were taken care of in the I-DFAS preprocessing phase of this thesis, as was the wave front optimization.

\section*{STYP 15. - WRIMING THE ANATYSTS FITE}

PROC, 15 explains that after the analysis has been completely defined the MISCellanecus Module's AFWRIIE commands is used to write out an pnalysis file. The format for this command is:

AFWRTME, NOUT, DLTST, NOCHK.
NOUT is the file into which the analysis data are to be written. By default, the analysis file will be FIIE27. DIIST allows the analysis data to be sumarized in tables during the solution phase. If DISST is 0 (default), no Eummary will be printed. But, if DISSI is set to 1 , the data will be summarized during the solution printout. NOCHK if set to 1 tells ANSYS that the data is not to be check before the analysis file is written. By default, NOCHK is set to 0 , and the data will be checked for completeness before the analysis file is written. If ANSYS finds any fatal errors during the check, the analysis file will not be written, and error statements will be printed. Therefore, when the analysis is completely set up (which for this thesis also requires the addition of the loads that are discussed in Chapters XII and XIV), the user will
issue the AFWRIIE command, and then exit PREP7 with the FINIshed command.

When the ANSYS PREPP ingut files written by I-DEAS were checked for accuracy and completeness, their last four lines were AFWRITE, FINISH, /INPUY,27, and FINISH. This would have caused ANSYS to write out an analysis file, exit PREM , and then suamit the analysis file to the ANSYS solution routine. These lines (except one of the FINISHEDB) were deleted from the ingut files. Because, it was decided that the models should be examined with the AMSYS graphical display commands before the analysis files were written and solved, to be sure that all of the model data was transferred out of I-DEAS and into ANSYS without any "bugs".

\section*{TRANSFFR OF PRPD7 TNPUT FITES FRCM I-DEAS}

After the input files were edited to make the changes needed to have then conform to the steps cutlined above, XIII, they were ready to be transferred into ANSYS. The first command line in each PREPT input file was /PRBp7. Therefore, these files were setup to be input from ANSYS' Routine Begin Level. This could have been in an interactive ANSYS session by typing:
/INPUT, TNPUP_FILE,EXT 《REIURN>,
in which INPUT_FILE is the name of the input file that was written by I-DEAS (e.g., N116), and EXI is the files extension (e.g., DAT). If the file is an ANSYS file, the file can be identified by number. For exauple,
\[
\text { /INPUT, } 27 \text { <REIURN>, }
\]
is entered when subwitting the analysis file FILE27.DAT or N116.F27 to the solution routine.

But, if this is done in an interactive session, the terminal will be tied up during the entire reading of the ingut file, and it may slow down the work of other users on the same computer network. Therefore, the PREP7 ingut files were transferred into ANSYS in the batch mode.

\section*{ANSYS BATCH COYYAND FIIE}

To make the batch transfer of the input files into ANSYS easier, a second command file written by Dr. Mike Day, at the University of Louisville, was used to sulamit the input files to batch processing. It is named "ANSYS BATCH.COM". This command file is listed in Appendix V.

This command file contains command lines that prompt the user for a MODEL_NAME that is to be submitted to ANSYS. This is to be a file named MODEK_NAME.DAT, where MODEL_NAME can be any logical file name. If the file specified does not exist in the current disk directory, the command file assumes that a MODEL_FIIE.F27 file exists, and it will proceed to create a .DAT file. The user is notified that this has occurred, and can abort the command files execution if this is not what was intended.

The batch coumand file then assigns this name to all of the required ANSYS files, in the format MODEX_FIEE.FNN, where NN is the file rumber (fram 02 to 40).

After making the file declarations, the command file prompts the users for the selection of one of GFA's VAX computer nodes, and then for the batch queve on this node that is to be used. Next it asks if the batch job is to be run "NOW" or "IONIGHI". If the user responds with NOW, the job will be sulmitted to the batch queve immediately. But, if
the job is lang, and the results will not be reviewed until the following day, TONIGFI should be chosen. This will place the job in the chosen quave such that the job will not be started until midnight. Finally, the user is asked if all the ANSYS files that are created during the run should be deleted upon completion, except for the results file (MODEL_FIIE.F12), the preprocessing (model) file (MODEL_FILE.F16) and the error listing file (MODEL_FIIE.F19). If the user responds with N for No, all files created during the solution run will be retained. If the user enters \(Y\) for Yes, all files created with a extension of .FNN will be deleted except for these three files.

\section*{GRAPHICAT DISTIAY OPMIONS}

ANSYS provides extensive graphical display capabilities when accessed with a color graphics terminal, workstation, or PC with Tektronix terminal emulation software. To make use of these capabilities, the first thing ANSYS requires before the user can call for any "plots" (which is how ANSYS refers to it graphics displays), is to specify the graphics DEVICE-NAME which is being used. ANSYS helps remind the user of this by including a note in the banner which is displayed upon entry into /FREP7 (and the postprocessor routines which are discussed later), that shows the user the he must enter:
/SHON, DEVICE-NAME
to enable graphics display. The DOCU,/SHOW lists the commands format: /SHON, FNAME, EXT, VECT, NCPL.

The FNAME can be ingut as a graphics device code when used to produce plots interactively on the display device. The on-line Documentation lists all of the valid device codes. For this thesis Tektronix
terminals and PCs with Tektronix emulation were used. So, the device codes: 4107, 4205, and 4129 were used depending on which device was being used at the time.

FNANE can also be used as a disk storage file name, with an extension of EXP. This allows the plots to be diverted to a file for later processing with one of ANSYS' external plot programs, such as Pror33 which is available an GEA'S VAX computer cluster system. This option was not utilized for this thesis and will not be described any further.

VECT is a switch (1 or 0) which is used to specify either raster plots, if available, or vector plots. In VECT is set to 0 (default), the plots will be displayed in raster mode with color fill. This will cause the plots to be display with each entity which has been set for coloring to be displayed with colors filled in. NCPL is used to set the ramber of color planes (terminal dependent) available for color filling, which can be between 4 and 8. But, when VECT is set to 1 , the plots will be displayed in vector form, without color filling. The user has to experiment with these setting to get optimum use of the graphics capabilities. In scme cases color filling is desirable. But, in others, the colors can cbscume entities which are being displayed. Color filling also requires more data transfer time, and can slow down the users progress.

\section*{COYBTNDNG TTFXT AND ERAPFTCS DISPLAYS}

ANSYS is capable of displaying both interactive text and graphical plots simultaneously on the same video screen. When a Tektronix termi-
nal is used, this involves the control of the "dialog" and the graphics display areas on the screen. When the user wish to view the dialog alone,
\[
/ T \text { <REIURN }
\]
can be entered, which will set the dialog area to the full number of dialog lines that are specified in the terminal's setup (e.g., *DAL, 32). If a plot has been displayed, the dialog will scroll over the graphics area, or the user can erased the graphics with the terminal's "g Erase" key.

If the user wishes to view a plot without seeing the text, /G <REIURN>
can be entered, and the dialcg will be turned off. This has the same effect as toggling the dialog off with a Tektronix terminal's "Dialog" key.

If the user wishes to see both text and graphics at the same time, /B <REIURN\
can be entered. This will turn the dialog on, and set the number of dialog lines to a reduced number from the number set in the terminal's setup, and place the text area below the graphics area on the video screen. The text will scroll in the lower area without overlapping the plots when further commands are irput.

\section*{PLOTHTNG THE EFA YCDETS}

The models can be viewed in one or more windows on a graphics terminal's display using the commands in ANSYS' FLOT Module. By typing: PIOT\$DOCU 〈REIURN〉,
and

FLOI\$DOCU,ATL <RBHIRN>. the user can review the on-line Documentation for the plot options. In FREP7 there are two basic plots available: NPLOF for dieplaying the model's nodes, and EPLOF for displaying the model's elements.

The display of these plots can be custamized to suit the user's needs by applying the options that are presented in the other Documentation screens that are suggested by the PLOF Module's DOCLmantation. These include the dieplay commands that can be review by typing: DOCU,GRPH <REIURN〉.

The graphical display control commands are all "slash" commands. They give the user the ability to: rotate the display (/ANGLe); automatically acale the plot to fill the display window (/AUMO); specify the distance from which the entities are viewed (/DISIance); distort the display of dieplacements for clarity (/DSCAle); Epecify the location of the focal point (/Focus); apply grids, log scaling, and axis labels (/GRAPH); set color epecifications (/NuMBer); display boundary conditions (/PBC); control the display of the system triad, border around the window(s) , and title (/PLOF); apply rumbering to the displayed entities (/FNUMber); distort the display along the \(X\) and/or \(Y\) screen axes to assist in the visualization of obscure entities (/RATIO); shrink the elements to examine their boundaries (/SHRInk); write text directly on the display at a user epecified location (/ILABel); create section and hidden-line displays (/TYPe); apply user epecified scaling (/USER); create perspective displays using a view cone angle (/VONV); define the viewing direction along a line notmal to the display screen (/VIWN); define, activate, and deactivate display windows (/WIND); and if the graphics terminal has the capability to perform screen picking (i.e.,
with a joy pad, mouse, tablet, or screen cursor control wheels) the user can pick the center and a radius point on a window to zocm in on the entities displayed (/ZOOM). There are several other display control commands presented in the DOCU,GRPH screen, but these were used most often. Several of these options will only take effect when the /USER command is applied. These are noted in the on-line documentation which is available for each by typing:

DOCU, COMNAND <REIURSS,
in which the display control command's name is used for the COMNRD.
In addition to using the /ZOCM camand to display selected portions of a complete node of element plot, the use of commands in the RSELect Module can also be applied to limit the number of entities displayed. These commands are documented for an-line review, which can be seen by typing:

RSEU \$DOCU 〈REIURN〉.
There are cammands for selecting nodes, elements, keypoints, line segments, areas, and volumes. Also, entities can be grouped into components with the commands in the cavponents Module.

Various combinations of these display options were used to view the FEA models that were transferred in from I-DEAS to be sure that all of the data were transferred without errors. Same of the displays are shown in Chapters XII and XIV. Once the author was satisfied that the models were constructed as desired, analysis files were written for ingut into the ANSYS solution Routine.

\section*{ANSYS ANALYSTS FTIES}

The analysis files were written out to ANSYS "FILE27" (actually named MCOEX_FILE. F27 by the interactive comand file that was used), for ingut into the solution routine, using the AFFRIIE cammand. Thus, completing Step 15 in the ANSYS analysis procedure discussed earlier.

After the analysis file was written, the FREPP module was exited with the FiNIshed command. This returned control to the Routine Begin Level of the ANSYS program, and also wrote a PREP7 RESUNE file (FILE16), that could be used to reload the models for further preprocessing.

\section*{BATCH SOIUITON OF Tक्ञE ANSYS ANALYSIS FIIPS}

The analysis files were submitted to ANSY's' solution routine in the batch mode. This was accomplished with the same batch coumand file that was used to transfer the models into ANSYS from I-DEAS. To do this, the model input files that had been transierred into ANSXS were renamed, so that they could be gave. Then new files were created with the same MODEL NAME.DAT file names. These files served as solution phase imput files. They contained the following comand line:
/INPUT,27
FINISHED
/BOF.
This allowed the batch coumand file to be used to sulmit the irput files to ANSYS for batch processing, using the logical file names that were declared when the models were input with this batch comand file. Because of the file declarations made by the command file, the /INPUT,27
command was used to irput the analysis files with the MODEL_NAME. F27 file names (e.g., N116.DAT), rather than the standard ANSYS analysis file name FILE27.DAT.

The batch command file was also used to deleted all of the files ANSYS created during solution of the analysis files, exscept for the solution results (MCDEX_NAME.12), the preppocessing resume file (MODES_NAME.16), and the errors file (MODEL NAME.19), when the solutions were completed.

Three additional files are created during the solution phase. They are MODEL_FILE.LOG, MODEL_FILE.LIS, and MODEL_FILE.COM. The LOG file contains information on the system control commands that were issued in during the batch "run", and at the end of the file any warnings and errors will be listed. Since the MODES_FIIE. F19 error file was not deleted, any warnings and errors will be listed in this file, and so the LOG file does not necessarily need to be saved. The IISt file contains a summary of the input and analysis results. Because ANSYS and I-DEAS postprocessing can be used to more conveniently investigate the analysis results, this file is seldam use. The COM file lists the system level coumands that were executed in SEIting system parameters, ASSIGNing and DEASSIGNing the logical file names, FdNing ANSYS, and DELETing the undesired files. This file would only be reviewed if a processing error occurred, and the user was trying to locate any problems. Therefore, one might consider modifying the batch command file to delete the three files from the user's disk directory along with the other ANSYS files that it can delete for the user automatically at the conclusion of the solution run.

\section*{APPENDIX XIV}

POST PROCESSING OPERATIONS

\section*{ANSYS POST PROCESSTMG OF THE SOLITION RESUTIS}

From ANSYS' Routine Begin Level, DOCU, POST <REIURN>
can be entered. ANSYS responds to this with documentation describing the post processing phase of an ANSYS analysis. ANSYS provides five post processing routines. Two of the routines are dedicated to the summation of harmonic loads, /POST29 and /POST30, for solid and shell models respectively, which do not apply to this thesis. /POST27 is used to combine the results from several load sets for comparison and display of the results. Since anly ane load set was run for each of the models constructed for this thesis, this Routine was not used. /POST26 is used to print out and plot displacement, stress, or tenperature time histories from the results of time dependent analysis (i.e., creep analyses, and dynamic analyses). But, since only static load cases were analyzed, this Routine was not used either. The postprocessor that was used is named /POSII.
/POSII is ANSYS' general analysis results data base postprocessor. It provided module of command that all the user to select result, sort, list, print, graphically display, and plot analysis results. Therefore, /POSTI <REIUFN>,
was entered to access this routine in interactive ANSYS sessions.
Unlike the preprocessing routine (/PREIP7), /POST1 does not provide the user with a procedure to follow in its on-line Dodmentation, since there is no step by step procedure that would be applicable to all post processing projects. But, the can enter HETP <REHURN>, to show the user how to access on-line documentation that is available. The documentation includes the MoDUles command, to determine where the user can located on-line Documentation on the commands that are provided in /POSII. HETP also shows the user that a coumand called PSIIF is provided for use in datermining what stress data is available for retrieval from the results file. A command named SLCT is provided which discusses the processes available for selecting the nodes and elements for which use in subeequent post processing. Similarly, a SRNG cammand discusses how the data can be sorted into ascending of descending order prior to listing or printing the results for the nodes or elements.

The /POSTI Mochules are: DEFINE, SELECT, SORL, PRINT, PLOT, CDSYS, NODE, CALCULate, LOCALOulate, and FATIGUE. FOr this thesis the first five modurs in this list were applicable, and were used for the preliminary post processing of the results of the loading cases that are discussed in Chapters XII and XIV. The DOCU command was used to display the documentation available on-line which describes the coumand available in each of this Moculules.

\section*{DEFTNE YODUTE_PROCESSES}

The DEFINE Module is used to define the stress and force data that is to be retrieved from the results file for processing, and to read the data into the interactive post processing session for processing. Before the stresses were defined for retrieval,
\[
\text { PSIIF, } 63 \text { <REIURS> }
\]
was entered to review that data that were available for the thin abell elements that were used in these analyses. This yielded a listing of the "IEVEL 1-3 DATA FOR SITF 63 [ETEYIRNIS]".

Section 4.0.4 of the ANSYS Fngineering Analysis System User's Marnal \({ }^{22}\) was reviewed to understand the various levels of data that are available. This documentation (not available on-line) explains that, in order to conserve computation time and disk storage space (i.e., to save analysis time and the cost of rum time), all of the stress data that could be generated during the solution phase are not autamatically calculated. ANSYS divides the available stress data into six "KED LEVEIS". These levels are numbered 1 through 6, representing: 1) force components; 2) basic stress components (centroidal and nodal); 3) principal stresses (centroidal and nodal), temperatures, etc.; 4) additional surface data; 5) nonlinear centroidal data; and 6) linear integration point data. \({ }^{23}\)

Not all element types are capable of producing data for all six of these levels. The description for a selected element type must be reviewed to determine which data are available for calculation during
\(\overline{22 .}\) Ibid., pp. 4.0.10-4.0.11.
23. Tbid., Table 4.0.4.1, p. 4.0.11.
the solution phase. ANSYS calculates all data that are in levels 1 through 3 by default. If the user needs to have items calculated that are in levels 4 through 6, these must be specified during the preprocessing phase, in order to tell ANSYS to produce those data during the solution run. The ANSYS preprocessing command which is used to specify the solution of data from KED levels 4 through 6 is "KEYOPTion". The format for this command is:

KEYOPT, ITYPE, KNUM, KEYOPT(KNLM) .
In this command, ITYPE is the number of one of the defined element types being used, KNUM, is the namber of the KEYOPTion that is being specified, and KEYOPT (KNUM) is the argument value desired for the key option being set. The SIIFF, JSITFF on-line documentation command lists the keyoptions that are available for the JSIIFF element type that is being used.

For this thesis, no additional calculations were required beyond the data that are procurced by default fram KFD levels 1 through 3.

\section*{SPDCTFYTNG THE STRESS DATA THRT ARE TO BE STORFD FCR PROCESSTIMG}

ANSYS automatically store the some "convenience" stress results when the analysis results are read into memory for post processing. The Convenience labels are in two groups: ComPonent nodal stresses: SX, SY, SXY, and SXZ; and FRINcipal nodal stresses: SIG1, SIG2, SIG3, S.I. (Max. Shear), and SIGE (Von Mises). The user must declare any other stress values that are desired from the results file. This is acocmplished with the ANSYS POSII SIRESS command. Also, the sorting commands (discussed below) are only available for data that are declared with the SIRESS Coumand.

The SIRESS ccmmand was used to identify the stress camponents that were to be processed. The format for the SIRESS command is: SIRESS, LAB, JSIIF, ITEM.

In this, LAB, is a user specified label (four characters maximm), which can be used with subsequent commands to identify this stress couponent for processing. ANSYS provides several "convenience" labels for use with strain energy, kinetic enengy, element volume, centroidal thermal and magnetic vectors. These can be obtained from the on-line Documentation of SIRESS. ANSYS cautions the user against using predefined ANSYS labels, like SX, DISP, UX, SIG1, etc. JSTIFF is the element library stiffness type number for the elements whose stress data are to be stored. ITEM is used to identify the solution data that are to be stored with this LABel, as identified by PSIIFF, JSIIFF or the post data listing provided in the ANSYS Engineering Analyais System User's Manalil \({ }^{24}\) for each element stiffness type. JSIIFF and ITFM are not used if any of the convenience labels are used.

\section*{SIORTNG ANALYSTS RESUTIS FOR POST PROCESSTNG}

Once the SIRESS command was used to specify that the principal stresses were to be stored for processing, the ANSYS POSII SEF command w as used to tell ANSYS to store the gecmetric, stress, force and displacement data for processing. The SET command is used to specify which load step and iteration's data are to be stored. The format for the SET command is:

SEI, LSIEP, ITER, NSECT, KING <REIURN>.

LSIEP, is used to tell ANSYS which load step is to be used. The default is load set 1. For this thesis, only one load step was solved for each of the static cases that was solved. IMER is used to indicate which iteration from within that load step's solution is to be used. only one iteration was made in the analyses used to determine the optimm mesh size. For the simulated load test analyses, iterative solution steps were required. This is discussed in Chapter XV. NSECT is used with cyclic analyses to specify which sector of the solution data is to be read. This did not apply to this thesis. Similarly, KDMG, which is used to store the imaginary part of complex analysis, was not applicable for this thesis. Therefore, for each of the interactive ANSYS post processing sessions that were run of this thesis, the following command line was issued:
\[
\text { SEI, 1, } 1 \text { <REHURN>. }
\]

\section*{SORTMMG AND PRTNHING_ANALYSTS RESUUTS TN ANSYS POST PROCESSTNG}

All analysis results that are read into memory with the SEI conmand can be reviewed as rumerical data with the commands documented in the PRINT module. These cammands can be reviewed by entering:

> FRTNISDOCU, (ALI) <REIURN>.

For this thesis, the maximm nodal displacements, and the maximun principal stress where desired, to determine which mesh size was best suited for these analyses, and to determine if the new support's strength is acceptably in comparison to the old support design. The nodal displacements can be printed out using the PRDISP command, and the values of stress that have been stored can be printed out with the FRSIRS command. But, before these coumands were used, the data was
sorted to place the maximum values of the desired displacements and stress at the top of each listing.

Sorting is accouplished with the coumands that are documented in the sorr module. The data is actually sorted based on the nodes or elements in the model.

For this thesis, the nodes needed to be sorted based on their displacament in the vertical direction. This was accomplished by applying the NSori conmand. Its format is:

NSORT, LABEL, ORDER, KABS, NMAX.
LABED is the sorting parameter. It must be one of the following: \(X, Y\), Z, DISP, ROT, UX, UZ, UZ, ROIX, ROIY, ROIZ, TEMP, PRES, VOIT, MAG, SX, SY, SXY, SXZ, SIG1, SIG2, SIG3, S.I., or SIGE. Therefore, to sort the nodes based on their vertical displacements, UZ was used as the LABEL. The CRDER can be specified as either 0 or negative for descending order, or as 1 or positive for ascending order. Thus, descerding order was specified. KABS is used to specify that the nodes are to be sorted on the parameter data's absolute values if it is set to 1 or positive, or their absolute values if it is set to 0 or negative. Since the vertical displacements were in the negative \(\mathbf{Z}\) direction, absolute values were desired. NNAX is used to specify the maximun number of nodes that are to be sorted. The default value of NMAX is all nodes that are active. If a set of nodes has been specified with the coumands documented in the SErFct module, which is less than the total number of nodes in the coupete FEA model, only those nodes will be sorted. If this has been done prior to sorting the node (e.g., to view a sub set of nodes), the

NAIL command can be used pricr to rumning the NSORT command to reset the node set to all of the nodes in the model. The NSORI command was entered as:
\[
\text { NSORT, UZ, 0, } 1 \text { <REIURN>. }
\]

Once the nodes were sorted, the PRDISP command was used to display the displacements of the nodes. The node with the maximum vertical displacement appeared at the top of the listing.

Next, the principal normal stresses were sorted and printed. This required the elements to sorted based on the stress data that was stored with the label "S1". Element sorting is done with the ESORT command, which has the format:

ESORPI, LABEL, ORDER, KABS, ENAX.
The parameters for this command work just like those used with the NSORT command, except LABEX must be a label that was defined with the POSTI SIRFSS command (e.g., "S1"). Therefore, the command was entered as: ESORT, S1, 0 <REIURN>.
once, the elements were sorted, the PRSIR command was used to print out the stress data. PRSIR has the format:

PRESIR, LAB1,, LAB10.
The valid LABles are: (BLANK) for the first 10 stress items; GRP1, for items 1 to 10; GRP2, for items 11 to 20; GRP3, for itens 21 to 30; GRP4, for items 31 to 40; or vector quantities TG, TF, EF, JS, FMAG, EMPG, or FNAG.

In addition to the PRESIR command, the PRNSIR command was used to print out the Cowponent and FRINicipal stresses. Before this command was
used, the MIDdle command (located in the DEFInition mocule) was used to specify that the results were to be printed for the middle (average) nodal stresses.

In addition to printing out the vertical dieplacements and stresses, the reaction forces were also printed out to be sure that their totals were equal to fifteen pounds (15 lbs) for the mesh optimization rums, and twanty-five pounds (25 lbs) for the load test simulation runs. This was done with the POSTI PRRFOR command.

\section*{PIOTITNG DISPLACEYENT AND STRESS RESUTIS IN ANSYS POST PROCESSTNG}

The POSII routine's cammand which are used to produce stress and displacement plots are documented in the PLOT module. Iike the plot commands that were discussed in Chapter XI, it is necessary to use the /SHON coumand to specify the graphics device and plot parameters prior to issuing any plot command in post processing the analysis results. Likewise, the cammands described in the on-line DOCU,GRPH (e.g., /PNUM, /NLIB, /PBC, and /PSYM) are used in POSTI just like they are in PREP7 to setup the details on the rumbering and color filling of the entities displayed, and the boundary and coordinate systems displayed, etc.

The models' nodes and elements can be displayed with the same NPLOT, and EPLOT commands that are used in PREP7 preppocessing. If they have been sorted, or if sub-sets of total model's nodes and elements have been setup, only those entities will be display. The complete model can be restored by using the NAIL and/or the EALI command.

The displacements resulting from the applied forces and pressures can be displayed with the PIDISPlacements command. The format for this comand is:

PLDISP,KIND 《REIURND.
In this, KUND can be either: 0 , which will display the displaced structure only; 1 , which will overlay the displaced plot with the UNDisplaced structure; or, 2, which will overlay the displaced structure with an edge plot of the undisplaced structure. The last of these kund options is preferred by the author, and therefore, for this thesis, displacement plots were made during interactive ANSYS post processing sessions by typing:

PIDISP, 2 <REIURN〉.
PIDISP is also controlled by the /DSCALE command. It is used to apply a scale factor to the distorted displacement plot being displayed. The format for this command is:
/DSCALE, WN, DMUTT <REIURN>.
WN is the display window in which this is to be applied, which has a default of 1. The Dafriplier parameter can be either 0 (or blank), 1, any user specified numerical value, or OFF. If 0 (default) is applied, the displacements will automatically be scaled such that the maximum displacement is displayed as five percent (5\%) of the window. If 1 is used, the displacements will be scaled the same as the true gecmetry. If the user specifies a numerical value, that value will be used to scale the distorted display. Finally, if OFF is specified, the displacement plot will show no displacements.

The analysis' stress results are display with the PINSIR plot command. The format for this command is:

PINSIR, SLABL, KAVG <REIURN>.
The SLABL label can be any valid stress label that has been stored with the SIRESS command, or from the following list: SX, SY, SZ, SKY, SYZ,

SKZ, SIG1, SIG2, SIG3, S.I., SIGE, UX, UY, UZ, ROIX, ROIY, ROIZ, PREC, TEYP, VOIT, MAG, BX, BY, BZ, or BSTM. KAVG can be set to either 0 or 1 . If it is set to 0 , nodal stresses (SX, SY, ..., SIGE) will be averaged, but SIRRESS command items will not be averaged. If KAVG is set to 1 , the opposite will occur (i.e., nodal stress will not and sIRess items will be averaged).

The appearance of the stress plots is effected by /NUMBer command, and by the selection of either vector or raster plotting, with the /SHOW command. The /NUNB command must be applied with either 1, for color and numbering, or 2, for color only. If it is applied with \(\mathbf{- 1}\), for no color or numbering, or 2, for numbering only, no stress contours will be displayed. If vector plotting is specified (e.g., /SHOW,4107, ,1), the stress contours will be displayed as line segments at each contours line, and will be marked with letters (A,B,C,...). If raster plotting is specified (e.g., /SHOW,4107, 0), the stress contours will be color filled between the contour lines. In either case, as long as the plots are made with a legend (i.e., /CLABEL,1,0 or 1, and not /CLABEL,1,-1), the contours will be labeled and a legend listing the stress value along each contour will be displayed.

It is impossible to display with grey scale copies of the color graphics displays, but, the ANSYS color displays of the stress contour plots uses color to very vividly show the gradients in resulting stress. The lowest values of stress are show in deep blue colors. The highest values of stress are show in red. The range fram lowest to highest stress are displayed with blue, ligint blue, green, yellow, arange, and finally red. This allow the analyst to display the entire structure. The ance the hot spots, that is the red areas of highest stress, are
seen, the /Z00M and sort commands can be used to display more limited areas showing the problem areas in the design.

In hind sight, if the author had defined different materials (with the same properties) for each of the individual pieces of the surface unit supports analyzed for this thesis, it would have been easier to view the resulting stresses in each piece of the supports. This could have been done by applying the ERSELect command with different MATerial numbars. This would have been by inputs in the focm: ERSETL,MRT,1 (or 2,3,4,...) <REIURN>. This would have allowed the overlapping portions of the supports to be separated for display.

\section*{IOADING ANSYS ANALYSTS DATA TNIO I-DEAS}

In order to apply I-DEAS to the post processing of FEA results from an ANSYS solution run, the Engineering Analysis Family's Data Loader Mocule must be used to read the results into an I-DEAS universal file. This is done by entering the I-DEAS program, either with a new model file (e.g., RESULTS.MF*) or with an existing model file. Then Engineering Analysis, Data Loader is selected when prompted for the input of the desired I-DEAS software Family (EA DL <REIURN>).

Once the Data Loader Module is active, ANSYS (AN) is given as a response to the prompt for the analysis type. I-DEAS next prompts the user for the Data Loader processing options. These options are listed in Table 8. When this prampt was presented, AL was ingut as the respanse.

Following the input of the processing option, the user is asked to input the name of the POST data file. This is the name of the ANSYS
results file, file 12. This will either be FIIE12.DAT, if no command file was used; or it will be MODEL_NAVE.F12 (e.g., N116.F12) if the batch command file was used to access ANSYS for solving the FFA models. Having responded to this prompt, I-DEAS will request a name for the universal file which is to be created. The default name of either FILE12.UAL OC MDDEX_NANE.UAL (e.g., N116.UAL) will be provided.
table 8.
I-DEAS DATA IOADFR PROCFSSTNG OPITCNS
AL - BOIH GECMEIRY AND ANALYSIS DATA
GD - GECNETIFY DATA ONLY
NG - NODE GEOMEIRY ONLY
EC - ETMYENT CONNECTIVITY ONLY
AD - ANALYSIS DATA
ND - NODAL DATA
ST - SIRESS DATA
EF - EMPDIENT FORCE DATA

After the specifications of the results and universal file names are made, I-DEAS asks the user if the data is to be loaded curing the present interactive session, or if batch processing is desired. For this thesis, because the files that were to be loaded were relatively small, and because this work was being done after normal business hours, interactive data loading was selected. Having input this response, I-DERS the performs the data loading task.

\section*{READING RESUTIS DATA UNTVFPSAT, FTTE TNIO I-DFAS POST PROCRESSTNG}

The data loading task does not actually read the results data into the I-DEAS model file data base. It creates an I-DEAS universal file, into which the data are loaded. For the data to be brought into the desired I-DEAS model files, using the Engineering Analysis Pre/Post Processing Module to read the universal file. Therefore, once the Data Loader completes its creation of the universal file, control is returned to the menu selection level for the specification of a Engineering Analysis Mocule. The user then selects Pre/Post Processing. Note, that if a different model file data base was used for the data loading function then is desired for the final reading of the results data, the user should access that desired data base before proceeding with the reading of the universal file.

Within Post Processing, MANAGE_FE MODELS, READ, UNIVERSAL is input. Then the name of the universal file (e.g., N116.UAL) is specified. I-DEAS then reads the universal file, which contains the ANSYS FEA model solution results into the model file data base (scratch files). During the read processing, the progress will be listed on the terminal's display screen. Once the data have been read, the user is asked if it is OK to load the graphics database. Once the user responds with YES (default), the graphics data is loaded into active memory, and display options can be processed.

\section*{ACCESSTNG ANALYSTS RESUTMS WITH T-DEAS}

In order to access the analysis results that have been transferred into I-DEAS for ANSYS, a GROUP of elements and/or nodes (depending an
the results desired) must first be created. In the case of displacements, the group must consist of elenents. As a first pass at displaying the displacament results, a group can be created containing all of the elements in the active FFA model. This can be done be entering: /GR NE EL * \(Y\) <REIURN>.

This group can the be stored as a pernanent group nsmed "ALL ELDVIENIS". This asame method can be used to establish permanent group containing all of the model's nodes by substituting N and NODES in place of EL and EJFMENIS in the two command lines.

If the user wants to investigate the results based on smaller subgroups of nodes and/or elements, other groups can be created by using the other ccumands in the GROUP meru. These include ADD, REmove, or NDN, with the use of graphic cursor picking of entities. The picking can be based on VISIBLE entities, SCREFN AREAS, or ENCIOSED VOLINES. Also, AIIRIBUTES can be used, and the entities can be REIATED_TO: ELDYENIS, CURVES, MESH_AREAS, MESH_VOLINES, etc.

Once a croup is created and made CURRENT, the ressults can be interrogated. To do this, an ANALYSIS_DATASET_SEMECIION must be made. This is done with the commands in the mern with this name. When the data was read into I-DEAS from the universal file, several datasets were created. Additional datasets can be CREATED, DESEIED, RENAMED, and have their DESCRIPIICNs Listed and MOdified, with the commands in this meru.

Requesting a Drrectory of the existing datasets will reveal the sets that were read in from the ANSYS results. The analyses made for this thesis resulted in datasets containing the displacements, stresses,
and reaction forces. Once one of these datasets is made CUrrent, the options presented in the POST_FROCESSING Module's main menu will change, based on the results that can be displayed from each dataset.

When a dataset containing displacements is made current, a DEFORMED_GEDVEIRY qption will be presented in the POST_PROCESSING main mern. Displacement data sets, as well as all other data sets, will also present command merus for ARRON_PLOTs, CONIOUR plots, XY-PLOTs, and if beam elements are being analyzed, BEAM_SHR_\&_MDM_DIAGRAMS can be used to create shear_and moment diagrams from stresses or element forces.

\section*{PRINTING ANALYSIS RESUUTS WITH I-DEAS}

In most cases, if the analysis has been solved using ANSYS, any listing or print out of the raw data results will have been performed with ANSYS during initial interactive post processing. But, it is possible to review this information using I-DEAS as well.

In the case of displacement results, the DEFORNED_GECNEIRY cammand menu contains a REFORI_DATA mend of commands which can be used to print the data to the computer terminal's screen, a disk file, or a printer. This command has several options which are controlled by the commands in this mernu.

The RAW_DATA_SW is used to toggle on and off the printing of the complete data file for the nodal displacements. If this switch is set to OFF, only the magnitude of the complete displacement for each nodes displacement will be printed. If it is CN, all of the \(\mathrm{X}, \mathrm{Y}, 2\), and rotational displacements will be printed.

The SUMARY_SN is used to print a summary of the data's Maximum, Minimum, and Average values when it is ON.

The SORI_CoIIMN command is used to sort the displacement data based on the data column specified. The columes are number from 1 to 7, in the following onder: Node Numbers, Translations in X, Y, Z, and Rotatians about X, Y, and 2. For this thesis, because translations in the Z direction were the most important, the data was sorted bosed on Colvm 4. This placed the node with the largest translation in the 2 direction at the top of the print out, followed by the rests of the nodes listed in descending order of magnitude.

The TIILE ccumand allows the user to specify a title to be printed in the header information that is printed before the data is listed. The header information also contains the: revision of I-DEAS being used; data and time; model file's title; Group ID name; analysis dataset; report type (Deformed Geometry); units; dataset type (Displacements) ; and load set.

If the data is being sent to an attached printer, the LTNES_PER_PAGE_(FIIE) command can be used to specify the number of lines that the printer is compatible with.

The SIATUS command can be used to verify the settings of each of these report options commands.

\section*{PLOITING DISPPACPYENT AND SIRPESS RESUTMS WITH I-DFAS}

The analysis results can be display graphically through the use of several display qptions that I-DEAS makes available in the Engineering Analysis Families Post Processing Module. As stated above for the printing of the results data, the options presented in the POST_PROCESSING Mocule's main meru will change, based on the results that can be displayed from each dataset.

The DEFCRYIDD_GDONEHRY Command calls up a manu that presents the commands and options that can be used to control and execute the display of the displaced geametry of an FEA model for which the displacements dataset is active. The displacements can be displayed as LMNE, FREE_FACE, CONITNUOUS_TCNE, HIDDEN_LINE, SHADED_DAGE, OO CUITING_PLANE_DISPIAY (if the model is constructed with solid elements) formats. Also, ANDAATICN sequences for the displacement results can be created, if the terminal being used supports animation. In each case, there are several options that can be set to customize the display results. PERCCENT_DEFORNAITCN and SCALE_OF_DEFORMATICN are both used to exaggerate the displayed displacements, like ANSYS' /DSCALE command. The two commands act a toggle switches, when one is specified, the other is turned off. PERCENI DEFORNATION is used to scale the displayed deformation as a percentage of the screen. For example, 10.0 would be input for \(10 \%\) of the viewport's size. SCALE_OF_DEFORMATION is used to specify a scale factor which all the displacements will be multiplied by. If the scale factor is specified as 10.0 , all displacements will be multiply by 10 and then displayed.

REIATIVE DISPLACFNENT allows the displacements to be displayed showing all displacements relative to the position of a specified node or location in space. This allows the user apply NODE OFFSEF, and selecting a node, using any of I-DEAS' standard entity specification or picking options, relative to which the other nodes displacenents will be displayed. Or, MANLAL OFFSET can be selected, and then a set of X, Y, and \(Z\) values can be input to specify the point in space about which the
displacemerts will be displayed. This will yield a display with all displacements appearing to be displaced the amount specified as the offset values.

The DEFORMIED_AITIRIBUIES and UNDEFORMIDD ATIRIBUIES menus each provide the same options, effecting either the daformed or undeformed geametry as their names imply. They allow the user to specify that the geametry be displayed either as BONDARY_CNLY or as ELEMENTS. In the case of the undeformed geometry, its display can be turned off by selecting NO_UNEFORNFD. Each of these merns also provides for user specification of the LINESTYLE (solid of dashed) and COLOR for the geometry displayed.

AFROW_PLOT provides a mernu of that presents the commands and options that can be used to control and execute the display of selected analysis results in a format in which they are displayed graphically as arrows placed at each node. The arrows will be displayed in a range of colors representing the magnitude of the data being displayed. A color key is displayed on the screen labeling the magnitude of the data at the ends of the range the colors represent. Arrow plots can be created for either FREE_FACE or CIITING_PLANE DISPLAY formats, similar to the DEFORMID_GECNEIRY plots. The user must. specify the results dataset that is to be used. This is done with the ON_DEFORNED_GECNEIRY sub-menu's ANALYSIS_DATASET_SETECT, USE ccmmand. The plot can be created with or without displaying the displaced geometry in the deformed format. This is specified by either turning the ON DEFORMED_GEOMEIRY ON OX OFF. The other cammands presented in this sub-menu allow the user to customized the display of deformed geametry with the same options a discussed for the DEFORMED_GFOMEIRY
plots. The user may specify the FRAE OF REFERbNCE for the displacements from the available coordinate systems (GIOBAL, LOCAL, DISPLACEMIENT, ELIMIFNI, MRIERTAL, OT SKEHCH_REF_FRANE); SHETL_SURFACE for shell elements (TOP, MLDDIE, BOITCM_SURFACEs, BENDING_VALUES, or LAMMNATE PLY); and the data that are to be plotted, all from within the ARRON PIOT, DATA COMPCNENI sub-meru. The data that is available for selection fram the DATA COMPCNENI meru depends on which ANALYSIS_DATASEI_SETECIION, CURRENT specification has been set. ARRON_PLOT also provides for the specification of the IOCATION_OF_ARROW, ARRON_LENGIH, COLOR_OF ARROWS, to further custamize the display of arrow plots. It also allows the element boundaries to be toggled on and OFF with an ELEMENT_BOUNDARY_SN.

CONIOUR plots can be created to display displacement, force, and stress results yielding contour plots similar to ANSYS' PLNSIR plots. The options available for customizing I-DEAS' CoNIOUR plots are the same as those described for the ARRON_PIOT commands. FREE FACE ONNOUR plots yield results are similar to ANSYS' PINSIR plots which are produced in vector form (i.e., without color filling). In addition to the formats that the DEFORNIDD_GDCNEIRY and ARROW_PLOT Ccumands provide, the CONIOUR plot options also present a FRINGE_CONIOUR memu. This option will yield results similar to ANSYS' PLNSIR plots which are produced in raster form (i.e., with color filling). Due to the difficulties faced in reproducing color plots in black and white for report duplication, it is desirable to be able to produce contour plots with "grayscale" shading. I-DEAS provides for this by toggling the GRAYSCALE SW to \(O N\), it is presented in several merus (e.g., CONIOUR, FRTNGE_CONIOURS). This allows all formats of the contour plots to be produced in grayscale.

Experimentation with this shows that this works well when applied with CONIINUOUS_TCNE CONIOUR plotting. But do to the limited number of gray tones available, and their similarity, it was still necessary to produce contour plots in color to be sure that the grayscale plots would be properly interprated, and to add some amotation to the black and white plots for this test.

I-DEAS Post Processing Nocule provides a unique command menu for the graphical display and printout of results based on user specified criterion. This is presented in the menu accessed with the appropriate command named CRIIERION. This meru allows the user to produce reports and plots in the same formats as discussed for the DEFORMED_GBCNEIRY, ARPON_FLOT, and CONIOUR commands, with the additional ability to specify criterion with which the data is interrogated curing the plot or report processing. The criterion is specified with the commands presented in the CRIIERION, DATA RANGE meru. This memu contains options for: ABOVE DATA_VALIE, ABOVE DATA_PERCENT, BETON_DATA_VAIUE, BETON_DATA_PERCENT, INSIDE DATA VALUE, INSIDE DATA_ PERCENI, OUISIDE DATA VALUE, and OUISIDE_DATA PERCENT.

I-DEAS Post Processing Moctule also provides coumands useful for procurcing reports and plots in XY_PIOT and BEAM_SHR_\&_MOM_DIAGRAM formats. These options were not required for this thesis, and thus there use will not be discussed here. But, users of the I-DEAS FEA analysis system should be aware that they are available, and their use should be explored where appropriate.

\section*{BIBISTOCRAFRY}

Bauld, N. R. Jr., Mechanics of Yaterials, Brooks/Cole Engineering Division, Monterey, California, 1982.

Boresi, A. P., Sidebottom, O. M., Advanced Mechanics of Yaterials, Fourth Edition, John Wiley \& Sons, New York, 1985.

DeSalvo, G. J., Gocman, R. W., ANSYS magineering Analysis System User's Manual, Swanson Analysis Systems, Inc., Houston, Pennsylvania, 1987.

Materials Selector, Materials Engineering magazine, Penton Publishing, Inc., December, 1989.

\section*{VITA}

The author, Jeffrey Alan Kern, is the son of Foy W. Kern and Julia (Easterday) Kern. He was born February 5, 1962, in Fort Hayne, Indiana.

His elementary education was obtained in the Fort Wayne Commmity School System, Fort Wayne, Indiana, and secondary education at R. Nelson Snider High School, Fort Wayne, Indiana, where he graduated in 1981.

In August, 1981, he enter Purdue University at the Indiana University - Purche University campus in Fort Wayne, Indiana (IPFW). In June, 1983, he was married to Lee (Langlet) Kern. In June, 1985, he received the degree of Bachelor of Science in Mechanical Engineering from Purdue University, on its main campus in West Lafayette, Indiana.

In June, 1985, he joined GE Appliances as an engineer, and began his studies toward a Master of Science degree at the University of Louisville, in Louisville, Kentucky. In January, 1987, Lee Kern gave birth to their first daughter, Mercedes Lymn Kern, and in November, 1990, to their second daughter, Fmerald Jane Kern. At the time this thesis was published, he had received two United States Patents, assigned to the General Electric Company: Tenperature Sensor Assembly for an Automatic Surface Unit, Patent Number 4,812,624; and Reversible Turbine Pump, Patent Number 4,923,366.```

[^0]: gap elements

 - OAD PLATE CONNECTED WITH

